-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalcula_preco_base_100.py
62 lines (50 loc) · 2.38 KB
/
calcula_preco_base_100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
import requests
import time
import csv
import datetime
import pandas as pd
import numpy as np
if __name__ == '__main__':
name_file_base = 'indices_diesel_e_gasolina_base.csv'
path_file_base = 'bases/'+name_file_base
# começa a fazer os cálculos para o arquivo base
df = pd.read_csv(path_file_base, sep=';')
# converte os dados do dataframe
df['data'] = pd.to_datetime(df['Data'], format='%d/%m/%Y', errors='ignore')
del df['Data']
count_nan = sum(pd.isnull(df['indice_gasolina']))
while count_nan > 0:
df['indice_gasolina'] = df['indice_gasolina'].fillna(value=(df['indice_gasolina'].shift(1) * df.Gasolina / 100) + df['indice_gasolina'].shift(1))
df['indice_diesel'] = df['indice_gasolina'].fillna(value=(df['indice_diesel'].shift(1) * df.Diesel / 100) + df['indice_diesel'].shift(1))
count_nan -= 1
df['indice_gasolina'] = df['indice_gasolina'].round(2)
df['indice_diesel'] = df['indice_gasolina'].round(2)
start_date = datetime.datetime(2017, 1, 1)
all_days = pd.date_range(start_date, df['data'].max(), freq='D')
df.index = pd.DatetimeIndex(df.data)
df = df.reindex(all_days, fill_value=0)
df[df['indice_gasolina'].eq(0)] = np.nan
df[df['indice_diesel'].eq(0)] = np.nan
count_nan = sum(pd.isnull(df['indice_gasolina']))
while count_nan > 0:
df['indice_gasolina'] = df['indice_gasolina'].fillna(value=(df['indice_gasolina'].shift(1)))
df['indice_diesel'] = df['indice_gasolina'].fillna(value=(df['indice_diesel'].shift(1)))
count_nan -= 1
df['data'] = df.index
del df['data']
df['Gasolina'] = df['Gasolina'].fillna(value=0)
df['Diesel'] = df['Diesel'].fillna(value=0)
df.index.name = 'data'
print("Último registro do arquivo base", "\n", df.tail(1))
# Salva o DataFrame em csv.
saida_path_file_base = 'bases/saida_'+name_file_base
df.to_csv(saida_path_file_base, sep=';', encoding='utf-8')
print("Arquivo base csv salvo com sucesso:", "\n", saida_path_file_base)
# Close the Pandas Excel writer and output the Excel file.
saida_xlsx_file_base = 'bases/saida_xlsx_'+name_file_base+'.xlsx'
writer = pd.ExcelWriter(saida_xlsx_file_base, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')
writer.save()
print("Arquivo base csv salvo com sucesso", "\n", saida_xlsx_file_base)