-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathima_quadro_resumo.py
141 lines (122 loc) · 5.72 KB
/
ima_quadro_resumo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
import csv
import os
from datetime import datetime
import pandas as pd
import utils
def download_file(url, dt_referencia, file_name):
# verifica se o arquivo deve ser baixado
if not utils.check_download(dt_referencia, file_name):
return False
dt_referencia = dt_referencia.strftime('%d/%m/%Y')
params = {
'Titulo_1': 'quadro-resumo',
'Consulta_1': 'Ambos',
'Dt_Ref': dt_referencia,
'DataIni': dt_referencia,
'DataFim': dt_referencia,
'Indice': 'quadro-resumo',
'Consulta': 'Ambos',
'saida': 'csv',
'Idioma': 'PT'
}
utils.download(url, params, file_name)
def import_files(folder_name, path_file_base, ultima_data_base):
file_list = os.listdir(r"downloads/"+folder_name+"/")
for file_name in file_list:
if not file_name.endswith('.csv'):
continue
path_file = os.path.join('downloads', folder_name, file_name)
with open(path_file, 'r', encoding='latin1') as f:
first_line = f.readline()
if 'QUADRO-RESUMO' in first_line:
print('extrair', path_file)
df = pd.read_csv(path_file, sep=';', skiprows=1,
encoding='latin1', header=0)
df['Data de Referência'] = pd.to_datetime(
df['Data de Referência'],
format='%d/%m/%Y',
errors='ignore'
)
# seleciona apenas os registros com data de referencia maior
# que a data base
selecao = df['Data de Referência'] > pd.to_datetime(
ultima_data_base)
df = df[selecao]
if len(df) == 0:
print('Nenhum registro a ser importado', path_file)
os.remove(path_file)
continue
# importa para o csv base
with open(path_file_base, 'a', newline='') as baseFile:
fieldnames = [
'dt_referencia',
'no_indice',
'nu_indice',
'var_diaria_perc',
'var_mensal_perc',
'var_anual_perc',
'var_ult_12_meses_perc',
'var_ult_24_meses_perc',
'peso_perc',
'duration_du',
'carteira_mercado_reais_mil',
'nu_operacoes',
'qt_negociada_1000_tit',
'vr_negociado_reais_mil',
'pmr',
'convexidade',
'yield',
'redemption_yield'
]
writer = csv.DictWriter(
baseFile, fieldnames=fieldnames, delimiter=';', quoting=csv.QUOTE_NONNUMERIC)
# insere cada registro na database
for index, row in df.iterrows():
row_inserted = {
'dt_referencia': row['Data de Referência'].date(),
'no_indice': row['Índice'],
'nu_indice': row['Número Índice'],
'var_diaria_perc': row['Variação Diária (%)'],
'var_mensal_perc': row['Variação Mensal (%)'],
'var_anual_perc': row['Variação Anual (%)'],
'var_ult_12_meses_perc': row['Variação Últimos 12 Meses (%)'],
'var_ult_24_meses_perc': row['Variação Últimos 24 Meses (%)'],
'peso_perc': row['Peso (%)'],
'duration_du': row['Duration (d.u.)'],
'carteira_mercado_reais_mil': row['Carteira a Mercado (R$ mil)'],
'nu_operacoes': row['Número de Operações *'],
'qt_negociada_1000_tit': row['Quant. Negociada (1.000 títulos) *'],
'vr_negociado_reais_mil': row['Valor Negociado (R$ mil) *'],
'pmr': row['PMR'],
'convexidade': row['Convexidade'],
'yield': row['Yield'],
'redemption_yield': row['Redemption Yield']
}
writer.writerow(row_inserted)
os.remove(path_file)
def main():
path_file_base = os.path.join('bases', 'ima_quadro_resumo_base.csv')
# verifica a última data disponível na base
ultima_data_base = utils.get_ultima_data_base(path_file_base)
# faz o download do csv no site da anbima
url = 'http://www.anbima.com.br/informacoes/ima/IMA-geral-down.asp'
name_download_folder = 'quadro-resumo'
path_download = utils.prepare_download_folder(name_download_folder)
# verifica a última data disponível na base
today = datetime.now().date()
cal = utils.get_calendar()
ultima_data_base = cal.offset(today, -6)
dates_range = list(utils.datetime_range(start=ultima_data_base, end=today))
for dt_referencia in reversed(dates_range):
file_name = os.path.join(path_download, dt_referencia.strftime(
'%Y%m%d') + '_ima_quadro_resumo.csv')
download_file(url, dt_referencia, file_name)
utils.remove_zero_files(name_download_folder)
import_files(name_download_folder, path_file_base, ultima_data_base)
# organizar o arquivo base por dt_referencia
utils.generate_csv_base(path_file_base)
print("Arquivos baixados com sucesso e importados para a base de dados")
if __name__ == '__main__':
main()