forked from analyticsinmotion/chatgpt-python-wrapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatgpt_images.py
100 lines (81 loc) · 4.15 KB
/
chatgpt_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""
This is a test script that provides access to OpenAI's ChatGPT model.
It creates a function chatgpt_images that allows a user to describe what image ChatGPT should create.
The image will be output in the output_chatgpt_images/images folder.
A response can also be output as a JSON file that contains additional metadata.
Functions:
chatgpt_images(prompt, n, size, output_to_file) -> object
"""
# Import os, dotenv, openai, json, re, requests, shutil, hashlib
import os
from dotenv import load_dotenv
import openai
import json
import re # use regular expressions
import requests # request images from the web
import shutil # save images locally
import hashlib # create simple file ids
# Load the API key for OpenAI
load_dotenv('openai_credentials.env')
openai.api_key = os.getenv("OPENAI_API_KEY")
# Create a function to input the image description and set the model parameters
def chatgpt_images(prompt, n=1, size="1024x1024", output_to_file=False):
"""
This function passes the text prompt, question or scenario to chatgpt and sets the model parameters
:param prompt: the text to send to the model
:param n: How many completions to generate for each prompt
:param size: The size of the generated images. Must be one of 256x256, 512x512, or 1024x1024
:param output_to_file: output a JSON file with the results
:rtype: object
"""
# Create an image using the settings from function
response_raw = openai.Image.create(prompt=prompt, n=n, size=size)
# Initialise a blank list to capture all the image ids
ids_list = []
# Download the images
for i in range(0, n):
response_url = response_raw['data'][i]['url']
# Extract the image ID from the URL the model creates
re_id_pattern = r"(img-.*?)\.png" # Get the image id
re_file_pattern = r"img-.*?\.png" # Get the full file name including image extension
ids = re.findall(re_id_pattern, response_url)[0] # Example output: 'img-YiVDiHbNylSFb1mN4Yc4Dgy'
file_name = re.findall(re_file_pattern, response_url)[0] # Example output: 'img-YiVDiHbNylSFb1mN4Yc4Dgy.png'
ids_list.append(ids) # Add the unique image id to a list as the loop iterates
# Request the URL for downloading
res = requests.get(response_url, stream=True)
if res.status_code == 200:
with open("output_chatgpt_images/images/" + file_name, 'wb') as f:
shutil.copyfileobj(res.raw, f)
print('Image successfully Downloaded: ', file_name)
else:
print('Image could not be retrieved')
# Convert the Completion response from an OpenAIObject to a dictionary type so can convert to JSON later
response_raw_dict_all = response_raw.__dict__
response_previous = response_raw_dict_all['_previous']
response_ms = {key: response_raw_dict_all[key] for key in response_raw_dict_all.keys() & {'_response_ms'}}
response_raw_dict = response_previous | response_ms
# Add the model runtime settings to a nested dictionary type so can convert to JSON later
request_settings = {
"parameters": [
{
"prompt": prompt,
"size": size,
"n": n
}
]
}
# Create a dictionary for the image ids. The number if ids is equal to n
ids_dict = {'ids': ids_list}
# Merge the three dictionaries together to form the amended response output
response_dict = response_raw_dict | request_settings | ids_dict
# Convert response dictionary to valid JSON format with some PrettyPrint indent
response = json.dumps(response_dict, indent=4)
# Create filename by hashing the image id/s and adding n as the final digit so can tell how many images requested
# This was done as could not find a unique ID in the ChatGPT response for images
file_name = str("img-" + hashlib.md5(" ".join(ids_list).encode()).hexdigest() + str("-") + str(n))
# Output to JSON file
if output_to_file is True:
with open("output_chatgpt_images/" + file_name + ".json", "w") as outfile:
json.dump(response_dict, outfile, indent=4)
# Return the amended ChatGPT Image details in JSON format
return response