forked from neuroneural/brainchop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.js
266 lines (263 loc) · 9.08 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import { Niivue } from '@niivue/niivue'
import { runInference } from './brainchop-mainthread.js'
import { inferenceModelsList, brainChopOpts } from './brainchop-parameters.js'
import { isChrome, localSystemDetails } from './brainchop-diagnostics.js'
import MyWorker from './brainchop-webworker.js?worker'
async function main() {
dragMode.onchange = async function () {
nv1.opts.dragMode = this.selectedIndex
}
drawDrop.onchange = async function () {
if (nv1.volumes.length < 2) {
window.alert('No segmentation open (use the Segmentation pull down)')
drawDrop.selectedIndex = -1
return
}
if (!nv1.drawBitmap) {
window.alert('No drawing (hint: use the Draw pull down to select a pen)')
drawDrop.selectedIndex = -1
return
}
const mode = parseInt(this.value)
if (mode === 0) {
nv1.drawUndo()
drawDrop.selectedIndex = -1
return
}
let img = nv1.volumes[1].img
let draw = await nv1.saveImage({ filename: "", isSaveDrawing: true })
const niiHdrBytes = 352
const nvox = draw.length
if (mode === 1) {//append
for (let i = 0; i < nvox; i++)
if (draw[niiHdrBytes+i] > 0)
img[i] = 1
}
if (mode === 2) {//delete
for (let i = 0; i < nvox; i++)
if (draw[niiHdrBytes+i] > 0)
img[i] = 0
}
nv1.closeDrawing()
nv1.updateGLVolume()
nv1.setDrawingEnabled(false)
penDrop.selectedIndex = -1
drawDrop.selectedIndex = -1
}
penDrop.onchange = async function () {
const mode = parseInt(this.value)
nv1.setDrawingEnabled(mode >= 0)
if (mode >= 0) nv1.setPenValue(mode & 7, mode > 7)
}
aboutBtn.onclick = function () {
window.alert('Drag and drop NIfTI images. Use pulldown menu to choose brainchop model')
}
diagnosticsBtn.onclick = function () {
if (diagnosticsString.length < 1) {
window.alert('No diagnostic string generated: run a model to create diagnostics')
return
}
navigator.clipboard.writeText(diagnosticsString)
window.alert('Diagnostics copied to clipboard\n' + diagnosticsString)
}
opacitySlider0.oninput = function () {
nv1.setOpacity(0, opacitySlider0.value / 255)
nv1.updateGLVolume()
}
opacitySlider1.oninput = function () {
nv1.setOpacity(1, opacitySlider1.value / 255)
}
async function ensureConformed() {
const nii = nv1.volumes[0]
let isConformed = nii.dims[1] === 256 && nii.dims[2] === 256 && nii.dims[3] === 256
if (nii.permRAS[0] !== -1 || nii.permRAS[1] !== 3 || nii.permRAS[2] !== -2) {
isConformed = false
}
if (isConformed) {
return
}
const nii2 = await nv1.conform(nii, false)
await nv1.removeVolume(nv1.volumes[0])
await nv1.addVolume(nii2)
}
async function closeAllOverlays() {
while (nv1.volumes.length > 1) {
await nv1.removeVolume(nv1.volumes[1])
}
}
modelSelect.onchange = async function () {
if (this.selectedIndex < 0) {
modelSelect.selectedIndex = 11
}
await closeAllOverlays()
await ensureConformed()
const model = inferenceModelsList[this.selectedIndex]
const opts = brainChopOpts
// opts.rootURL should be the url without the query string
const urlParams = new URL(window.location.href)
// remove the query string
opts.rootURL = urlParams.origin + urlParams.pathname
const isLocalhost = Boolean(
window.location.hostname === 'localhost' ||
// [::1] is the IPv6 localhost address.
window.location.hostname === '[::1]' ||
// 127.0.0.1/8 is considered localhost for IPv4.
window.location.hostname.match(/^127(?:\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$/)
)
if (isLocalhost) {
opts.rootURL = location.protocol + '//' + location.host
}
if (workerCheck.checked) {
if (typeof chopWorker !== 'undefined') {
console.log('Unable to start new segmentation: previous call has not completed')
return
}
chopWorker = await new MyWorker({ type: 'module' })
const hdr = { datatypeCode: nv1.volumes[0].hdr.datatypeCode, dims: nv1.volumes[0].hdr.dims }
const msg = { opts, modelEntry: model, niftiHeader: hdr, niftiImage: nv1.volumes[0].img }
chopWorker.postMessage(msg)
chopWorker.onmessage = function (event) {
const cmd = event.data.cmd
if (cmd === 'ui') {
if (event.data.modalMessage !== '') {
chopWorker.terminate()
chopWorker = undefined
}
callbackUI(event.data.message, event.data.progressFrac, event.data.modalMessage, event.data.statData)
}
if (cmd === 'img') {
chopWorker.terminate()
chopWorker = undefined
callbackImg(event.data.img, event.data.opts, event.data.modelEntry)
}
}
} else {
runInference(opts, model, nv1.volumes[0].hdr, nv1.volumes[0].img, callbackImg, callbackUI)
}
}
saveImgBtn.onclick = function () {
nv1.volumes[1].saveToDisk('Custom.nii')
}
saveSceneBtn.onclick = function () {
nv1.saveDocument("brainchop.nvd");
}
workerCheck.onchange = function () {
modelSelect.onchange()
}
clipCheck.onchange = function () {
if (clipCheck.checked) {
nv1.setClipPlane([0, 0, 90])
} else {
nv1.setClipPlane([2, 0, 90])
}
}
function doLoadImage() {
opacitySlider0.oninput()
}
async function fetchJSON(fnm) {
const response = await fetch(fnm)
const js = await response.json()
return js
}
async function callbackImg(img, opts, modelEntry) {
closeAllOverlays()
const overlayVolume = await nv1.volumes[0].clone()
overlayVolume.zeroImage()
overlayVolume.hdr.scl_inter = 0
overlayVolume.hdr.scl_slope = 1
overlayVolume.img = new Uint8Array(img)
if (modelEntry.colormapPath) {
const cmap = await fetchJSON(modelEntry.colormapPath)
overlayVolume.setColormapLabel(cmap)
// n.b. most models create indexed labels, but those without colormap mask scalar input
overlayVolume.hdr.intent_code = 1002 // NIFTI_INTENT_LABEL
} else {
let colormap = opts.atlasSelectedColorTable.toLowerCase()
const cmaps = nv1.colormaps()
if (!cmaps.includes(colormap)) {
colormap = 'actc'
}
overlayVolume.colormap = colormap
}
overlayVolume.opacity = opacitySlider1.value / 255
await nv1.addVolume(overlayVolume)
}
async function reportTelemetry(statData) {
if (typeof statData === 'string' || statData instanceof String) {
function strToArray(str) {
const list = JSON.parse(str)
const array = []
for (const key in list) {
array[key] = list[key]
}
return array
}
statData = strToArray(statData)
}
statData = await localSystemDetails(statData, nv1.gl)
diagnosticsString = ':: Diagnostics can help resolve issues https://github.com/neuroneural/brainchop/issues ::\n'
for (const key in statData) {
diagnosticsString += key + ': ' + statData[key] + '\n'
}
}
function callbackUI(message = '', progressFrac = -1, modalMessage = '', statData = []) {
if (message !== '') {
console.log(message)
document.getElementById('location').innerHTML = message
}
if (isNaN(progressFrac)) {
// memory issue
memstatus.style.color = 'red'
memstatus.innerHTML = 'Memory Issue'
} else if (progressFrac >= 0) {
modelProgress.value = progressFrac * modelProgress.max
}
if (modalMessage !== '') {
window.alert(modalMessage)
}
if (Object.keys(statData).length > 0) {
reportTelemetry(statData)
}
}
function handleLocationChange(data) {
document.getElementById('location').innerHTML = ' ' + data.string
}
const defaults = {
backColor: [0.4, 0.4, 0.4, 1],
show3Dcrosshair: true,
onLocationChange: handleLocationChange
}
let diagnosticsString = ''
let chopWorker
const nv1 = new Niivue(defaults)
nv1.attachToCanvas(gl1)
nv1.opts.dragMode = nv1.dragModes.pan
nv1.opts.multiplanarForceRender = true
nv1.opts.yoke3Dto2DZoom = true
nv1.opts.crosshairGap = 11
nv1.setInterpolation(true)
await nv1.loadVolumes([{ url: './t1_crop.nii.gz' }])
for (let i = 0; i < inferenceModelsList.length; i++) {
const option = document.createElement('option')
option.text = inferenceModelsList[i].modelName
option.value = inferenceModelsList[i].id.toString()
modelSelect.appendChild(option)
}
nv1.onImageLoaded = doLoadImage
modelSelect.selectedIndex = -1
drawDrop.selectedIndex = -1
workerCheck.checked = await isChrome() // TODO: Safari does not yet support WebGL TFJS webworkers, test FireFox
// uncomment next two lines to automatically run segmentation when web page is loaded
// modelSelect.selectedIndex = 11
// modelSelect.onchange()
// get the query string parameter model.
// if set, select the model from the dropdown list and call the modelSelect.onchange() function
const urlParams = new URLSearchParams(window.location.search)
const modelParam = urlParams.get('model')
if (modelParam) {
// make sure the model index is a number
modelSelect.selectedIndex = Number(modelParam)
modelSelect.onchange()
}
}
main()