Skip to content

Commit b33619e

Browse files
committed
Create CuttingRodProblem
1 parent 3a92ba8 commit b33619e

File tree

1 file changed

+73
-0
lines changed

1 file changed

+73
-0
lines changed

CuttingRodProblem

Lines changed: 73 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,73 @@
1+
2+
/*
3+
* Question: What is the best price for cutting a rod of length n
4+
*
5+
* Question and Answer Source: http://www.geeksforgeeks.org/dynamic-programming-set-13-cutting-a-rod/
6+
* https://www.youtube.com/watch?v=U-09Gs6cbsQ&list=PL962BEE1A26238CA3&index=4
7+
*
8+
*/
9+
10+
package dynamicProgramming;
11+
12+
import java.util.Scanner;
13+
14+
public class CuttingRodProblem {
15+
public static void main(String[] args){
16+
Scanner in = new Scanner(System.in);
17+
try{
18+
System.out.println("Enter the number of cuts");
19+
int n = in.nextInt();
20+
int[] prices = new int[n];
21+
System.out.println("Enter the prices of rod cuts");
22+
for(int i=0;i<n;i++){
23+
System.out.println("Enter price for "+(i+1)+" rod length");
24+
prices[i] = in.nextInt();
25+
}
26+
System.out.println("The best price for rod cut of size "+n+" using Recursion is: "+byRecursion(prices, n));
27+
System.out.println("The best price for rod cut of size "+n+" using DP is: "+byDP(prices, n));
28+
}
29+
finally{
30+
in.close();
31+
}
32+
}
33+
public static int byRecursion(int[] prices, int rodLength){
34+
35+
// Base Case
36+
if(rodLength<=0)
37+
return 0; // if rod length is 0 then there is no best price
38+
39+
// Recursive Step
40+
int maxPrice = 0;
41+
for (int i = 0; i<rodLength; i++)
42+
maxPrice = Math.max(maxPrice, prices[i]+byRecursion(prices,rodLength-1-i));
43+
44+
45+
// Returning Step
46+
return maxPrice;
47+
48+
}
49+
/*
50+
* Analysis:
51+
* Time Complexity = O(2^n) // not sure
52+
* Space Complexity = O(1) used by dp array
53+
*/
54+
public static int byDP(int[] prices, int rodLength){
55+
56+
int[] dp = new int[rodLength+1]; // +1 because 0 rodLength will have best prices of 0
57+
dp[0] = 0;
58+
59+
int maxPrice = -1;
60+
for(int i=1;i<=rodLength;i++){ // i represents rodLength
61+
for(int j=0;j<i;j++) // price of cut from 0 to rodLength-1
62+
maxPrice = Math.max(maxPrice,prices[j]+dp[i-j-1]); // here i represents rodLength
63+
dp[i] = maxPrice;
64+
}
65+
66+
return dp[rodLength];
67+
}
68+
/*
69+
* Analysis:
70+
* Time Complexity = O(n^2)
71+
* Space Complexity = O(n) used by dp array
72+
*/
73+
}

0 commit comments

Comments
 (0)