diff --git a/tutorials/CMakeLists.txt b/tutorials/CMakeLists.txt index 73a25a8557715..b2fb556f6b65c 100644 --- a/tutorials/CMakeLists.txt +++ b/tutorials/CMakeLists.txt @@ -315,13 +315,11 @@ else() list(APPEND tmva_veto machine_learning/envelope/classification.C) endif() #these depends on external packages - if (machine_learning-pymva) - ROOT_FIND_PYTHON_MODULE(torch QUIET) - ROOT_FIND_PYTHON_MODULE(keras QUIET) - ROOT_FIND_PYTHON_MODULE(sonnet QUIET) - ROOT_FIND_PYTHON_MODULE(graph_nets QUIET) - ROOT_FIND_PYTHON_MODULE(sklearn QUIET) - endif() + ROOT_FIND_PYTHON_MODULE(torch QUIET) + ROOT_FIND_PYTHON_MODULE(keras QUIET) + ROOT_FIND_PYTHON_MODULE(sonnet QUIET) + ROOT_FIND_PYTHON_MODULE(graph_nets QUIET) + ROOT_FIND_PYTHON_MODULE(sklearn QUIET) if (NOT BLAS_FOUND) list(APPEND tmva_veto machine_learning/TMVA_SOFIE_GNN_Application.C) list(APPEND tmva_veto machine_learning/TMVA_SOFIE_RDataFrame.C) @@ -336,14 +334,12 @@ else() list(APPEND tmva_veto machine_learning/TMVA_SOFIE_Models.py) list(APPEND tmva_veto machine_learning/TMVA_SOFIE_Inference.py) list(APPEND tmva_veto machine_learning/TMVA_SOFIE_RSofieReader.C) - list(APPEND tmva_veto machine_learning/RBatchGenerator_TensorFlow.py) endif() if (NOT ROOT_SKLEARN_FOUND) list(APPEND tmva_veto machine_learning/TMVA_SOFIE_Models.py roofit/roofit/rf617_simulation_based_inference_multidimensional.py) endif() if (NOT ROOT_TORCH_FOUND) list(APPEND tmva_veto machine_learning/TMVA_SOFIE_PyTorch.C) - list(APPEND tmva_veto machine_learning/RBatchGenerator_PyTorch.py) endif() #veto this tutorial since it is added directly list(APPEND tmva_veto machine_learning/TMVA_SOFIE_GNN_Parser.py) @@ -935,10 +931,25 @@ if(ROOT_pyroot_FOUND) analysis/dataframe/df035_RDFFromPandas.py roofit/roofit/rf409_NumPyPandasToRooFit.py) file(GLOB requires_keras RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} machine_learning/keras/*.py) - file(GLOB requires_torch RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} machine_learning/pytorch/*.py) + file(GLOB requires_torch RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} + machine_learning/pytorch/*.py + machine_learning/RBatchGenerator_PyTorch.py + ) file(GLOB requires_xgboost RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} machine_learning/tmva10*.py) file(GLOB requires_sklearn RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} roofit/roofit/rf617*.py) - set(fixtureLists requires_numpy requires_numba requires_pandas requires_keras requires_xgboost requires_torch requires_sklearn) + file(GLOB requires_tensorflow RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} + machine_learning/RBatchGenerator_TensorFlow.py + ) + set(fixtureLists + requires_keras + requires_numba + requires_numpy + requires_pandas + requires_sklearn + requires_tensorflow + requires_torch + requires_xgboost + ) # Now set up all the tests foreach(t ${pytutorials}) diff --git a/tutorials/machine_learning/TMVA_SOFIE_Models.py b/tutorials/machine_learning/TMVA_SOFIE_Models.py index 5925ea497360d..469e22940c77c 100644 --- a/tutorials/machine_learning/TMVA_SOFIE_Models.py +++ b/tutorials/machine_learning/TMVA_SOFIE_Models.py @@ -41,7 +41,7 @@ def CreateModel(nlayers = 4, nunits = 64): def PrepareData() : #get the input data - inputFile = str(ROOT.gROOT.GetTutorialDir()) + "machine_learning/data/Higgs_data.root" + inputFile = str(ROOT.gROOT.GetTutorialDir()) + "/machine_learning/data/Higgs_data.root" df1 = ROOT.RDataFrame("sig_tree", inputFile) sigData = df1.AsNumpy(columns=['m_jj', 'm_jjj', 'm_lv', 'm_jlv', 'm_bb', 'm_wbb', 'm_wwbb']) diff --git a/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.C b/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.C index 0753e35d83c45..4f6a731c22966 100644 --- a/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.C +++ b/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.C @@ -34,7 +34,7 @@ using namespace TMVA::Experimental; void TMVA_SOFIE_RDataFrame(int nthreads = 2){ std::string inputFileName = "Higgs_data.root"; - std::string inputFile = gROOT->GetTutorialDir() + "/machine_learning/data/" + inputFileName; + std::string inputFile = std::string{gROOT->GetTutorialDir()} + "/machine_learning/data/" + inputFileName; ROOT::EnableImplicitMT(nthreads); diff --git a/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.py b/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.py index 1b23d0b7d607c..6185684f31b66 100644 --- a/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.py +++ b/tutorials/machine_learning/TMVA_SOFIE_RDataFrame.py @@ -37,7 +37,7 @@ ROOT.gInterpreter.Declare('auto sofie_functor = TMVA::Experimental::SofieFunctor<7,TMVA_SOFIE_'+modelName+'::Session>(0,"Higgs_trained_model_generated.dat");') # run inference over input data -inputFile = str(ROOT.gROOT.GetTutorialDir()) + "machine_learning/data/Higgs_data.root" +inputFile = str(ROOT.gROOT.GetTutorialDir()) + "/machine_learning/data/Higgs_data.root" df1 = ROOT.RDataFrame("sig_tree", inputFile) h1 = df1.Define("DNN_Value", "sofie_functor(rdfslot_,m_jj, m_jjj, m_lv, m_jlv, m_bb, m_wbb, m_wwbb)").Histo1D(("h_sig", "", 100, 0, 1),"DNN_Value") diff --git a/tutorials/machine_learning/TMVA_SOFIE_RDataFrame_JIT.C b/tutorials/machine_learning/TMVA_SOFIE_RDataFrame_JIT.C index 5a1326c1d83aa..0969f5f33b4ea 100644 --- a/tutorials/machine_learning/TMVA_SOFIE_RDataFrame_JIT.C +++ b/tutorials/machine_learning/TMVA_SOFIE_RDataFrame_JIT.C @@ -68,7 +68,7 @@ void TMVA_SOFIE_RDataFrame_JIT(std::string modelFile = "Higgs_trained_model.h5") CompileModelForRDF(modelHeaderFile,7); std::string inputFileName = "Higgs_data.root"; - std::string inputFile = gROOT->GetTutorialDir() + "/machine_learning/data/" + inputFileName; + std::string inputFile = std::string{gROOT->GetTutorialDir()} + "/machine_learning/data/" + inputFileName; ROOT::RDataFrame df1("sig_tree", inputFile); auto h1 = df1.Define("DNN_Value", "sofie_functor(rdfslot_,m_jj, m_jjj, m_lv, m_jlv, m_bb, m_wbb, m_wwbb)") diff --git a/tutorials/machine_learning/TMVA_SOFIE_RSofieReader.C b/tutorials/machine_learning/TMVA_SOFIE_RSofieReader.C index 3fcbf372c36f0..46763fae5e153 100644 --- a/tutorials/machine_learning/TMVA_SOFIE_RSofieReader.C +++ b/tutorials/machine_learning/TMVA_SOFIE_RSofieReader.C @@ -39,7 +39,7 @@ void TMVA_SOFIE_RSofieReader(){ // predict model now on a input file using RDataFrame std::string inputFileName = "Higgs_data.root"; - std::string inputFile = gROOT->GetTutorialDir() + "/machine_learning/data/" + inputFileName; + std::string inputFile = std::string{gROOT->GetTutorialDir()} + "/machine_learning/data/" + inputFileName; ROOT::RDataFrame df1("sig_tree", inputFile);