forked from meereeum/k-meanz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
k_means.py
184 lines (149 loc) · 7.42 KB
/
k_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
###############################################################################
#
# k_means.py - Implement k-means clustering on image data!
#
###############################################################################
# #
# This program is free software: you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation, either version 3 of the License, or #
# (at your option) any later version. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# #
# You should have received a copy of the GNU General Public License #
# along with this program. If not, see <http://www.gnu.org/licenses/>. #
# #
###############################################################################
__author__ = "Miriam Shiffman"
__copyright__ = "Copyright 2015"
__credits__ = ["Miriam Shiffman"]
__license__ = "GPL3"
__version__ = "0.0.1"
__maintainer__ = "Miriam Shiffman"
__email__ = ""
__status__ = "Development"
###############################################################################
from PIL import Image
import random
from itertools import chain, izip
###############################################################################
###############################################################################
###############################################################################
###############################################################################
class kmeans():
"""Cluster pixels by k means algorithm"""
def __init__(self, filepath, k = 10):
self.img = Image.open(filepath)
self.img.show()
self.k = k
self.pixelMap = self.img.load()
#TODO: figure out how to sample from generator ?
self.pixels_xy = [ (x,y) for x in xrange(self.img.size[0])
for y in xrange(self.img.size[1]) ]
self.__initialize_k_dict__( random.sample( self.pixels_xy, self.k ) )
#self.k_lst = [ (random.randint(0, self.img.size[0]-1), random.randint(0, self.img.size[1]-1)) \
#for _ in xrange(self.k) ]
## check to see that two random k points are not identical
#while len(set(self.k_lst)) < self.k:
#self.k_lst.append( (random.randint(0, self.img.size[0]-1), random.randint(0, self.img.size[1]-1)) )
#self.__initialize_k_dict__(self.k_lst)
def __initialize_k_dict__(self, k_vals):
"""Generate dictionary of k clusters based on list of (x,y) tuples for k means"""
# Initialize k clusters with pixels in group, starting with points representing k clusters themselves
self.d_k_clusters = { self.xy2xyrgb(t_xy): [ self.xy2xyrgb(t_xy) ]
for t_xy in k_vals }
def minimize_distance(self, pixel, metric):
"""Given tuple representing pixel in image, return k group that minimizes distance by given metric"""
dists = [ (k, metric(pixel, k)) for k in self.d_k_clusters.iterkeys() ]
# find tuple representing best k group by minimizing distance
best_k, _ = min( dists, key = lambda t: t[1] )
return best_k
def xy2xyrgb(self, t_xy):
"""Given (x,y) of pixel, returns ((x,y), (R, G, B))"""
return ( t_xy, self.pixelMap[ t_xy[0], t_xy[1] ] )
def assign_pixels(self, metric):
"""Assign all pixels in image to closest matching group in self.d_k_groups, according to given distance metric"""
print 'assigning pixels'
for t in ( (x,y) for x in xrange(0, self.img.size[0])
for y in xrange(0, self.img.size[1]) ):
# convert (x, y) of pixel location to ((x, y), (r, g, b))
tval = self.xy2xyrgb(t)
# append to dictionary value list corresponding to key of k-mean
# that minimizes distance by given metric
self.d_k_clusters[ self.minimize_distance( tval, metric ) ].append(tval)
def generate_image(self, warholize=False):
"""Once all pixels have been assigned to k clusters, use d_k_clusters to generate image data, with new pixel values determined by mean RGB of the cluster, or random color palette if warholize=True"""
self.new_img = Image.new('RGB', self.img.size, "black")
# create pixel map
pixels = self.new_img.load()
def mean_rgb(k):
"""Given key value in self.d_k_clusters, return k mean by averaging (r,g,b) value over all values in group"""
vals = self.d_k_clusters[k]
# in order to sum tuple values, zip all tuples via splatted generator of (r,g,b) vals
summed_rgb = tuple( sum(rgb) for rgb in izip( *( v[1] for v in vals )) )
return tuple( int(rgb / len(vals)) for rgb in summed_rgb )
if warholize:
random_colors = random_color_palette(self.k)
print 'putting pixels'
for i, (k, v_list) in enumerate(self.d_k_clusters.iteritems()):
#print '.'
pixelval = ( random_colors[i] if warholize else mean_rgb(k) )
for t_xy, _ in v_list:
pixels[t_xy[0], t_xy[1]] = pixelval
self.new_img.show()
###############################################################################
###############################################################################
###############################################################################
###############################################################################
def euclidean_dist(p1, p2):
"""Compute Euclidean distance between 2 pts of any (equal) dimensions
IN: two iterables (tuples, lists)
OUT: float"""
return sum( abs(x1-x2) for x1, x2 in izip(chain.from_iterable(p1),
chain.from_iterable(p2)) )**0.5
# inspired by http://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
def random_color_palette(n, RGB=True):
"""Generates a random, aesthetically pleasing set of n colors (list of RGB tuples if RGB; else HSV)"""
SATURATION = 0.6
VALUE = 0.95
GOLDEN_RATIO_INVERSE = 0.618033988749895
# see: https://en.wikipedia.org/wiki/HSL_and_HSV#Converting_to_RGB
def hsv2rgb(hsv):
h, s, v = hsv
# compute chroma
c = v*s
h_prime = h*6.0
x = c*( 1 - abs(h_prime %2 - 1) )
if h_prime >= 5: rgb = (c,0,x)
elif h_prime >= 4: rgb = (x,0,c)
elif h_prime >= 3: rgb = (0,x,c)
elif h_prime >= 2: rgb = (0,c,x)
elif h_prime >= 1: rgb = (x,c,0)
else: rgb = (c,x,0)
m = v-c
return tuple( int(255*(val+m)) for val in rgb )
# random float in [0.0, 1.0)
hue = random.random()
l_hues = [hue]
for i in xrange(n-1):
# generate evenly distributed hues by random walk using the golden ratio!
# (mod 1, to stay within hue space)
hue += GOLDEN_RATIO_INVERSE
hue %= 1
l_hues.append(hue)
if not RGB:
return [ (h, SATURATION, VALUE) for h in l_hues ]
return [ hsv2rgb((h, SATURATION, VALUE)) for h in l_hues ]
def implement(infile, k, warholize=False):
x = kmeans(infile, k=k)
x.assign_pixels(metric=euclidean_dist)
x.generate_image(warholize=warholize)
FILE_IN = '/Users/miriamshiffman/Desktop/Pics/Art/sc236393.jpg'
K=40
if __name__ == "__main__":
implement(FILE_IN, K)