-
Notifications
You must be signed in to change notification settings - Fork 2
LittleGuy: Autonomous Flat Sheet Modeling
I would like to create a lambda function suitable for determining automous flight. The data will be YOLO obstacles, MIDS for depth, and ORB-SLAM3 for mapping. From that data I want to generate the model. The model will be based on a flat sheet. The space will be modeled as if the sheet is being pulled to form the shapes that represent those 3 inputs. do it in golang. The platform is aws lambda.
Creating an AWS Lambda function in Go to process YOLO obstacles, MIDS depth, and ORB-SLAM3 mapping data into a flat-sheet-based spatial model involves multiple steps. Here is an outline of how you can implement this:
-
Input Preprocessing: ** YOLO Obstacles: YOLO provides bounding boxes for detected objects. You'll need to parse the bounding box coordinates and object types. ** MIDS Depth: MIDS depth data provides depth information for each pixel or region. You'll need to parse this data to understand the spatial relationship between objects. ** ORB-SLAM3 Mapping: ORB-SLAM3 provides pose and map information. You'll need to extract key points and their spatial positions.
-
Spatial Modeling: ** Convert the input data (obstacles, depth, mapping) into a unified representation. ** Use a "flat sheet" approach where the data pulls the sheet to form a spatial model. This essentially means using the data to deform a 2D plane into a 3D shape.
-
AWS Lambda in Go: Implement the Lambda function in Go to process the input and return the spatial model.
-
Use libraries like
-
math for calculations and encoding/json for parsing input/output.
Here is an example of how you might write the Lambda function: Go Code for AWS Lambda
package main
import (
"context"
"encoding/json"
"fmt"
"math"
"github.com/aws/aws-lambda-go/lambda"
)
// Input structure for YOLO, MIDS, and ORB-SLAM3 data
type InputData struct {
YOLOObstacles []YOLOObstacle `json:"yolo_obstacles"`
MIDSDepth [][]float64 `json:"mids_depth"`
ORBMapPoints []MapPoint `json:"orb_map_points"`
}
type YOLOObstacle struct {
Type string `json:"type"`
BoundingBox [4]int `json:"bounding_box"` // [x_min, y_min, x_max, y_max]
}
type MapPoint struct {
X float64 `json:"x"`
Y float64 `json:"y"`
Z float64 `json:"z"`
}
// Output structure for the spatial model
type SpatialModel struct {
FlatSheet [][]float64 `json:"flat_sheet"` // 2D grid representing the spatial model
}
// Lambda handler function
func Handler(ctx context.Context, input InputData) (SpatialModel, error) {
// Constants for the flat sheet
const sheetWidth = 100
const sheetHeight = 100
// Initialize flat sheet
flatSheet := make([][]float64, sheetHeight)
for i := range flatSheet {
flatSheet[i] = make([]float64, sheetWidth)
}
// Process YOLO obstacles
for _, obstacle := range input.YOLOObstacles {
xMin, yMin, xMax, yMax := obstacle.BoundingBox[0], obstacle.BoundingBox[1], obstacle.BoundingBox[2], obstacle.BoundingBox[3]
for y := yMin; y <= yMax; y++ {
for x := xMin; x <= xMax; x++ {
if x >= 0 && x < sheetWidth && y >= 0 && y < sheetHeight {
flatSheet[y][x] += 1.0 // Example of marking the obstacle region
}
}
}
}
// Process MIDS depth data
for y, row := range input.MIDSDepth {
for x, depth := range row {
if x >= 0 && x < sheetWidth && y >= 0 && y < sheetHeight {
flatSheet[y][x] += depth // Example of modifying sheet based on depth
}
}
}
// Process ORB-SLAM3 map points
for _, point := range input.ORBMapPoints {
x := int(math.Round(point.X))
y := int(math.Round(point.Y))
z := point.Z // Z represents the depth or height
if x >= 0 && x < sheetWidth && y >= 0 && y < sheetHeight {
flatSheet[y][x] += z // Example: Adjust the sheet based on map point depth
}
}
// Normalize flat sheet values (optional, for visualization or consistency)
maxValue := 0.0
for _, row := range flatSheet {
for _, value := range row {
if value > maxValue {
maxValue = value
}
}
}
if maxValue > 0 {
for y := range flatSheet {
for x := range flatSheet[y] {
flatSheet[y][x] /= maxValue // Scale all values between 0 and 1
}
}
}
// Return the spatial model
output := SpatialModel{
FlatSheet: flatSheet,
}
return output, nil
}
func main() {
// Start the Lambda function
lambda.Start(Handler)
}Explanation of Remaining Code
ORB-SLAM3 Map Points Processing:
Each map point provides spatial coordinates (
X
,
Y
,
Z
).
X
and
Y
are rounded to fit into the grid (flat sheet), and
Z
adjusts the sheet's height or deformation at that point.
This allows ORB-SLAM3's mapping data to pull the flat sheet into a 3D-like representation.
Normalization:
The values in the
flatSheet
may become too large or inconsistent after processing all inputs.
Normalizing the values ensures they remain within a consistent range (e.g., 0 to 1), which is useful for visualization or downstream processing.
Returning the Spatial Model:
The function returns the
SpatialModel
containing the flat sheet as a 2D array.
This represents the deformed sheet based on the combined inputs from YOLO, MIDS, and ORB-SLAM3.
Deploying to AWS Lambda
To deploy this function:
Set up AWS Lambda Environment:
Ensure you have the AWS CLI set up and an AWS account.
Build the Go Binary:
Compile the Go code into a binary for Lambda:
GOOS=linux GOARCH=amd64 go build -o main main.go
Package the Binary:
Create a ZIP file with the compiled binary:
zip function.zip main
Deploy the Lambda Function:
Use the AWS CLI to deploy:
aws lambda create-function \
--function-name SpatialModelLambda \
--runtime provided.al2 \
--handler main \
--zip-file fileb://function.zip \
--role <YOUR_ROLE_ARN>
Replace
<YOUR_ROLE_ARN>
with the ARN of an IAM role that provides necessary permissions.
Test the Lambda Function:
Invoke the Lambda function using the AWS CLI:
aws lambda invoke \
--function-name SpatialModelLambda \
--payload '{"yolo_obstacles": [...], "mids_depth": [...], "orb_map_points": [...]}' \
output.json
Next Steps
Input Validation:
Add validation to ensure the input data (YOLO obstacles, MIDS depth, OR
Continuing from where we left off, here are the next steps in enhancing and refining the Lambda function:
To ensure data integrity and prevent errors, you should validate the input data before processing it. For example:
// Validate input data
func validateInput(input InputData) error {
// Check YOLO Obstacles
for _, obstacle := range input.YOLOObstacles {
if len(obstacle.BoundingBox) != 4 {
return fmt.Errorf("invalid bounding box: %+v", obstacle.BoundingBox)
}
if obstacle.BoundingBox[0] < 0 || obstacle.BoundingBox[1] < 0 {
return fmt.Errorf("bounding box contains negative values: %+v", obstacle.BoundingBox)
}
}
// Check MIDS Depth
for _, row := range input.MIDSDepth {
for _, depth := range row {
if depth < 0 {
return fmt.Errorf("depth value cannot be negative: %f", depth)
}
}
}
// Check ORB-SLAM3 Map Points
for _, point := range input.ORBMapPoints {
if math.IsNaN(point.X) || math.IsNaN(point.Y) || math.IsNaN(point.Z) {
return fmt.Errorf("invalid ORB-SLAM3 map point: %+v", point)
}
}
return nil
}
// Incorporate validation into the handler
func Handler(ctx context.Context, input InputData) (SpatialModel, error) {
// Validate the input data
if err := validateInput(input); err != nil {
return SpatialModel{}, fmt.Errorf("input validation failed: %v", err)
}
// Continue with processing...
// (Existing processing logic for YOLO, MIDS, and ORB-SLAM3 data)
}AWS Lambda requires clear error handling to provide meaningful feedback when something goes wrong. Wrap critical sections of the code with error checks and return descriptive messages.
// Example error handling during sheet processing
for _, obstacle := range input.YOLOObstacles {
xMin, yMin, xMax, yMax := obstacle.BoundingBox[0], obstacle.BoundingBox[1], obstacle.BoundingBox[2], obstacle.BoundingBox[3]
if xMin < 0 || yMin < 0 || xMax >= sheetWidth || yMax >= sheetHeight {
return SpatialModel{}, fmt.Errorf("bounding box out of range: %+v", obstacle.BoundingBox)
}
// Process obstacle area
for y := yMin; y <= yMax; y++ {
for x := xMin; x <= xMax; x++ {
if x >= 0 && x < sheetWidth && y >= 0 && y < sheetHeight {
flatSheet[y][x] += 1.0
}
}
}
}Add logging for debugging purposes using the log package. AWS Lambda automatically captures logs, which you can view in AWS CloudWatch.
import (
"log"
)
func Handler(ctx context.Context, input InputData) (SpatialModel, error) {
log.Println("Starting processing of input data...")
// Log input sizes for debugging
log.Printf("YOLO Obstacles: %d, MIDS Depth Rows: %d, ORB Map Points: %d",
len(input.YOLOObstacles), len(input.MIDSDepth), len(input.ORBMapPoints))
// Continue with processing logic...
log.Println("Finished processing input data.")
return SpatialModel{}, nil
}Before deploying to AWS Lambda, test the function locally using example input. You AI-generated content may be incorrect continue 4. Testing Locally (Continued)
Before deploying the Lambda function, you can use local testing frameworks to ensure the function behaves as expected. Create Example Input Data
Prepare a JSON file with example data for YOLO obstacles, MIDS depth, and ORB-SLAM3 mapping:
input.json
{
"yolo_obstacles": [
{"type": "tree", "bounding_box": [10, 20, 30, 40]},
{"type": "car", "bounding_box": [50, 60, 70, 80]}
],
"mids_depth": [
[0.5, 0.6, 0.7],
[0.3, 0.4, 0.5],
[0.1, 0.2, 0.3]
],
"orb_map_points": [
{"x": 25.0, "y": 35.0, "z": 5.0},
{"x": 55.0, "y": 65.0, "z": 10.0}
]
}
Test Locally Using aws-lambda-go
You can use the aws-lambda-go package’s
lambda.Start()function to simulate Lambda locally. Run the Go code with the example input.
test.go
package main
import (
"context"
"encoding/json"
"fmt"
"os"
)
// Test the Lambda function locally
func main() {
// Open the example JSON input file
file, err := os.Open("input.json")
if err != nil {
fmt.Printf("Error opening file: %v\n", err)
return
}
defer file.Close()
// Decode JSON into InputData struct
var input InputData
if err := json.NewDecoder(file).Decode(&input); err != nil {
fmt.Printf("Error decoding JSON: %v\n", err)
return
}
// Call the handler function directly for local testing
result, err := Handler(context.Background(), input)
if err != nil {
fmt.Printf("Handler error: %v\n", err)
return
}
// Print the output for debugging
output, err := json.MarshalIndent(result, "", " ")
if err != nil {
fmt.Printf("Error marshaling output: %v\n", err)
return
}
fmt.Println(string(output))
}Run the code locally:
go run test.go
This simulates the Lambda function with the example input and prints the spatial model output to the console.
Update the Deployment Process
To deploy the Lambda function, follow these updated steps:
Build the Binary for AWS Lambda
GOOS=linux GOARCH=amd64 go build -o main main.go
Package the Binary
zip function.zip main
Deploy the Function
aws lambda create-function \
--function-name SpatialModelLambda \
--runtime provided.al2 \
--handler main \
--zip-file fileb://function.zip \
--role <YOUR_ROLE_ARN>
Test the Lambda Function Remotely Use the AWS CLI to invoke the Lambda function remotely:
aws lambda invoke \
--function-name SpatialModelLambda \
--payload file://input.json \
output.json
Check the
output.json
file for the spatial model result.
Performance Optimization
Memory Allocation: Ensure the Lambda function has enough memory (e.g.,
AI-generated content may be incorrect continue 6. Optimize the Lambda Function (Continued) Performance Optimization
AWS Lambda functions have configurable memory and execution time. To ensure optimal performance:
Memory Allocation:
AWS Lambda allows you to allocate memory between 128 MB and 10,240 MB. If your Lambda function processes large inputs (e.g., depth maps or 3D point clouds), increase the memory allocation.
Use the AWS CLI to update the memory size:
aws lambda update-function-configuration \
--function-name SpatialModelLambda \
--memory-size 512
Timeout Settings:
By default, AWS Lambda has a 3-second timeout. If your function requires more time for large spatial calculations, increase this limit (up to 15 minutes).
Update the timeout using the AWS CLI:
aws lambda update-function-configuration \
--function-name SpatialModelLambda \
--timeout 30
Concurrency:
If the Lambda function is invoked concurrently (e.g., from multiple autonomous drones), ensure sufficient concurrency limits are set:
aws lambda put-function-concurrency \
--function-name SpatialModelLambda \
--reserved-concurrent-executions 10
Optimize the Flat Sheet Model
To improve performance, reduce computational overhead:
Grid Resolution: If the flat sheet (2D grid) has a high resolution (e.g.,
100x100
), consider using a coarser grid for initial testing or low-detail applications.
Batch Processing: For large MIDS depth arrays or ORB-SLAM3 map points, process data in batches to reduce memory consumption.
Example: Adjust the grid resolution dynamically based on input size.
const defaultWidth = 100
const defaultHeight = 100
func adjustResolution(input InputData) (int, int) {
// Adjust resolution based on input size
if len(input.MIDSDepth) > 500 {
return defaultWidth * 2, defaultHeight * 2 // Increase resolution
}
return defaultWidth, defaultHeight
}Enhanced Error Handling
Add more granular error handling to help debug issues in production. For example:
Check for invalid bounding boxes, depth values, or map points.
Catch panics using
defer
to avoid unexpected Lambda failures.
func Handler(ctx context.Context, input InputData) (SpatialModel, error) {
defer func() {
if r := recover(); r != nil {
fmt.Printf("Recovered from panic: %v\n", r)
}
}()
// Validate the input data
if err := validateInput(input); err != nil {
return SpatialModel{}, fmt.Errorf("input validation failed: %v", err)
}
// Process input data...
// Add detailed error messages in each processing step
return SpatialModel{}, nil
}Logging and Monitoring
CloudWatch Logs:
AWS Lambda automatically streams logs to CloudWatch. Use
log.Println
or
fmt.Printf
to log key events and debug information.
View logs in CloudWatch:
aws logs tail /aws/lambda/SpatialModelLambda --follow
Custom Metrics:
Use AWS CloudWatch custom metrics to monitor execution time, memory usage, and error rates.
Example: Log execution duration.
start := time.Now()
// Process input data...
elapsed := time.Since(start)
log.Printf("Execution time: %s", elapsed)
Integrate with Other AWS Services
**S3 for
AI-generated content may be incorrect continue 8. Future Enhancements (Continued) Integrate with Other AWS Services
S3 for Input/Output Storage:
If the input data (YOLO obstacles, MIDS depth, ORB-SLAM3 mapping) or the output spatial model is large, you can use Amazon S3 to store and retrieve the data.
Modify the Lambda function to read input from an S3 bucket and write the output back to a different S3 bucket.
Example: Reading input from S3:
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io/ioutil"
"strings"
"github.com/aws/aws-lambda-go/lambda"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/service/s3"
)
func readInputFromS3(bucket, key string) (InputData, error) {
sess := session.Must(session.NewSession())
svc := s3.New(sess)
obj, err := svc.GetObject(&s3.GetObjectInput{
Bucket: aws.String(bucket),
Key: aws.String(key),
})
if err != nil {
return InputData{}, fmt.Errorf("failed to retrieve object from S3: %v", err)
}
body, err := ioutil.ReadAll(obj.Body)
if err != nil {
return InputData{}, fmt.Errorf("failed to read object body: %v", err)
}
var input InputData
if err := json.Unmarshal(body, &input); err != nil {
return InputData{}, fmt.Errorf("failed to parse JSON: %v", err)
}
return input, nil
}Example: Writing output to S3:
func writeOutputToS3(bucket, key string, output SpatialModel) error {
sess := session.Must(session.NewSession())
svc := s3.New(sess)
outputJSON, err := json.Marshal(output)
if err != nil {
return fmt.Errorf("failed to marshal output JSON: %v", err)
}
_, err = svc.PutObject(&s3.PutObjectInput{
Bucket: aws.String(bucket),
Key: aws.String(key),
Body: bytes.NewReader(outputJSON),
ContentType: aws.String("application/json"),
})
if err != nil {
return fmt.Errorf("failed to write object to S3: %v", err)
}
return nil
}Update the Lambda handler to use these functions:
func Handler(ctx context.Context, event map[string]string) (string, error) {
inputBucket := event["input_bucket"]
inputKey := event["input_key"]
outputBucket := event["output_bucket"]
outputKey := event["output_key"]
input, err := readInputFromS3(inputBucket, inputKey)
if err != nil {
return "", err
}
output, err := processInput(input) // Your existing spatial model logic
if err != nil {
return "", err
}
if err := writeOutputToS3(outputBucket, outputKey, output); err != nil {
return "", err
}
return "Processing complete", nil
}API Gateway for Real-Time Integration:
Use AWS API Gateway to expose the Lambda function as a REST API.
This would allow drones or other devices to send real-time input data to the Lambda function and receive the computed spatial model as a response.
Example: Configure API Gateway to pass a JSON payload directly to the Lambda function. You can reuse the existing handler logic to process the input.
3 AI-generated content may be incorrect continue 8. Future Enhancements (Continued) 2. API Gateway for Real-Time Integration
Integrating AWS API Gateway with your Lambda function allows autonomous systems (e.g., drones) to send real-time data and receive spatial modeling results dynamically. Steps to Configure API Gateway:
Create an API Gateway REST API:
Go to the AWS Management Console, navigate to API Gateway, and create a new REST API.
Define an HTTP POST method for your Lambda function.
Integrate the Lambda Function:
In the API Gateway console, link the POST method to the Lambda function (
SpatialModelLambda
).
Enable Lambda Proxy Integration to pass the request payload directly to the function.
Update the Lambda Handler for API Requests: Modify the Lambda handler to receive input directly from the API Gateway:
func APIGatewayHandler(ctx context.Context, request map[string]interface{}) (map[string]interface{}, error) {
// Extract input data from API Gateway payload
inputJSON, err := json.Marshal(request)
if err != nil {
return nil, fmt.Errorf("failed to marshal request: %v", err)
}
var input InputData
if err := json.Unmarshal(inputJSON, &input); err != nil {
return nil, fmt.Errorf("failed to parse input data: %v", err)
}
// Process the input to generate the spatial model
output, err := processInput(input) // Your spatial modeling logic
if err != nil {
return nil, fmt.Errorf("failed to process input: %v", err)
}
// Return the output as a JSON response
response := map[string]interface{}{
"statusCode": 200,
"body": output,
}
return response, nil
}
func main() {
lambda.Start(APIGatewayHandler)
}
Test the API:
Deploy the API Gateway to a stage (e.g.,
dev
) and retrieve the endpoint URL.
Use tools like
curl
or Postman to send a POST request to the API with YOLO, MIDS, and ORB-SLAM3 data.
Example
curl
command:
curl -X POST \
-H "Content-Type: application/json" \
-d '{
"yolo_obstacles": [{"type": "tree", "bounding_box": [10, 20, 30, 40]}],
"mids_depth": [[0.5, 0.6, 0.7], [0.3, 0.4, 0.5], [0.1, 0.2, 0.3]],
"orb_map_points": [{"x": 25.0, "y": 35.0, "z": 5.0}]
}' \
https://your-api-endpoint/dev
- DynamoDB for Persistent Storage
If you need to store historical spatial models or input data for analysis, integrate DynamoDB into the Lambda function. Example: Writing Output to DynamoDB
Define a table in DynamoDB (e.g., SpatialModels ) with attributes such as:
ModelID
(Primary Key)
Timestamp
FlatSheetData
Update the Lambda function to save the spatial model to DynamoDB:
import (
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/service/dynamodb"
)
func saveToDynamoDB(modelID string, timestamp string, output SpatialModel) error {
sess := session.Must(session.NewSession())
svc := dynamodb.New(sess)
// Convert FlatSheetData to JSONContinuing from where we left off, here is how you can complete the DynamoDB integration: 3. DynamoDB for Persistent Storage (Continued) Saving FlatSheet Data to DynamoDB
To store the spatial model (
FlatSheetData
) as a JSON string in DynamoDB, first serialize it and then write it to the table.
import (
"encoding/json"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/service/dynamodb"
"github.com/aws/aws-sdk-go/service/dynamodb/dynamodbattribute"
"time"
)
// Define a struct for storing data in DynamoDB
type DynamoDBItem struct {
ModelID string `json:"model_id"`
Timestamp string `json:"timestamp"`
FlatSheet string `json:"flat_sheet"` // Stored as a JSON string
}
// Function to save spatial model to DynamoDB
func saveToDynamoDB(modelID string, output SpatialModel) error {
sess := session.Must(session.NewSession())
svc := dynamodb.New(sess)
// Convert FlatSheetData to JSON
flatSheetJSON, err := json.Marshal(output.FlatSheet)
if err != nil {
return fmt.Errorf("failed to serialize flat sheet: %v", err)
}
// Create DynamoDB item
item := DynamoDBItem{
ModelID: modelID,
Timestamp: time.Now().Format(time.RFC3339),
FlatSheet: string(flatSheetJSON),
}
// Convert the item to a DynamoDB map
ddbItem, err := dynamodbattribute.MarshalMap(item)
if err != nil {
return fmt.Errorf("failed to marshal DynamoDB item: %v", err)
}
// Put the item into the DynamoDB table
input := &dynamodb.PutItemInput{
TableName: aws.String("SpatialModels"), // Replace with your table name
Item: ddbItem,
}
_, err = svc.PutItem(input)
if err != nil {
return fmt.Errorf("failed to write item to DynamoDB: %v", err)
}
return nil
}Updating the Lambda Handler
Update the Lambda handler to call the saveToDynamoDB function after generating the spatial model:
func Handler(ctx context.Context, input InputData) (string, error) {
// Validate the input data
if err := validateInput(input); err != nil {
return "", fmt.Errorf("input validation failed: %v", err)
}
// Process the input to generate the spatial model
output, err := processInput(input) // Your existing spatial model logic
if err != nil {
return "", fmt.Errorf("failed to process input: %v", err)
}
// Save the output to DynamoDB
modelID := "model-" + time.Now().Format("20060102150405") // Example unique model ID
if err := saveToDynamoDB(modelID, output); err != nil {
return "", fmt.Errorf("failed to save to DynamoDB: %v", err)
}
return fmt.Sprintf("Model saved with ID: %s", modelID), nil
}- Improve Flat-Sheet Modeling Dynamic Grid Resolution
Instead of using a fixed grid size for the flat sheet (e.g., 100x100 ), dynamically adjust the resolution based on the input data's scale or complexity.
func dynamicResolution(input InputData) (int, int) {
// Example: Use higher resolution for more complex inputs
numObstacles := len(input.YOLOObstacles)
numMapPoints := len(input.ORBMapPoints)
if numObstacles > 50 || numMapPoints > 1000 {
AI-generated content may be incorrect continue
Continuing from where we left off: Dynamic Grid Resolution (Continued)
For dynamic grid resolution, you can adjust the resolution of the flat sheet based on the complexity of the input data:
func dynamicResolution(input InputData) (int, int) {
// Example: Use higher resolution for more complex inputs
numObstacles := len(input.YOLOObstacles)
numMapPoints := len(input.ORBMapPoints)
// Base resolution
width, height := 100, 100
// Adjust resolution based on input complexity
if numObstacles > 50 || numMapPoints > 1000 {
width, height = 200, 200
} else if numObstacles > 20 || numMapPoints > 500 {
width, height = 150, 150
}
return width, height
}Update the flat sheet initialization in your handler to use the dynamically determined resolution:
func initializeFlatSheet(input InputData) [][]float64 {
width, height := dynamicResolution(input)
flatSheet := make([][]float64, height)
for i := range flatSheet {
flatSheet[i] = make([]float64, width)
}
return flatSheet
}- Real-Time Visualization
For debugging or monitoring, you might want to visualize the deformed flat sheet (spatial model). This can be done by exporting the flat sheet as an image or 3D model. Export Flat Sheet to an Image
You can use a library like github.com/fogleman/gg (a 2D drawing library for Go) to render the flat sheet into an image.
Install the library:
go get -u github.com/fogleman/gg
Generate an image from the flat sheet:
import ( "image/color" "github.com/fogleman/gg" )
// Render the flat sheet to an image func renderFlatSheetToImage(flatSheet [][]float64, outputPath string) error { width := len(flatSheet[0]) height := len(flatSheet)
// Create a new image context
dc := gg.NewContext(width, height)
// Normalize the flat sheet values to the range [0, 1]
maxValue := 0.0
for _, row := range flatSheet {
for _, value := range row {
if value > maxValue {
maxValue = value
}
}
}
// Draw the flat sheet onto the image
for y, row := range flatSheet {
for x, value := range row {
normalizedValue := value / maxValue // Scale to [0, 1]
gray := uint8(normalizedValue * 255)
dc.SetColor(color.RGBA{gray, gray, gray, 255})
dc.SetPixel(x, y)
}
}
// Save the image to the output path
if err := dc.SavePNG(outputPath); err != nil {
return fmt.Errorf("failed to save image: %v", err)
}
return nil
}
Call this function to generate an image after processing the flat sheet:
if err := renderFlatSheetToImage(flatSheet, "/tmp/flat_sheet.png"); err != nil { log.Printf("Error rendering flat sheet to image: %v", err) }
You can then upload the generated image to an S3 bucket for further analysis or debugging.
If the input data is very large (e.g., dense depth maps or massive point clouds), optimize the Lambda function to handle it efficiently. Batch Processing
Divide large inputs (e.g., depth maps or ORB-SLAM3 points) into smaller batches to process iteratively AI-generated content may be incorrect continue 6. Optimize for Large Inputs (Continued) Batch Processing
When processing large inputs like depth maps or ORB-SLAM3 point clouds, handling them in smaller batches can help reduce memory usage and improve Lambda performance.
Here’s how you can implement batch processing for ORB-SLAM3 map points:
// Process ORB-SLAM3 map points in batches func processORBMapPointsInBatches(flatSheet [][]float64, mapPoints []MapPoint, batchSize int) error { totalPoints := len(mapPoints) for i := 0; i < totalPoints; i += batchSize { // Get the current batch of points end := i + batchSize if end > totalPoints { end = totalPoints } batch := mapPoints[i:end]
// Process each point in the batch
for _, point := range batch {
x := int(math.Round(point.X))
y := int(math.Round(point.Y))
z := point.Z
if x >= 0 && x < len(flatSheet[0]) && y >= 0 && y < len(flatSheet) {
flatSheet[y][x] += z // Modify the sheet based on Z depth
}
}
}
return nil
}
To use this function in your Lambda handler:
batchSize := 100 // Define a reasonable batch size if err := processORBMapPointsInBatches(flatSheet, input.ORBMapPoints, batchSize); err != nil { log.Printf("Error processing ORB-SLAM3 map points: %v", err) return SpatialModel{}, err }
Parallel Processing
If the flat sheet is large or the input data is complex, consider dividing the workload into parallel tasks using Go routines. For example:
// Process MIDS depth data in parallel func processMIDSDepthParallel(flatSheet [][]float64, depthData [][]float64) { numWorkers := 4 // Number of parallel workers chunkSize := len(depthData) / numWorkers
var wg sync.WaitGroup
for i := 0; i < numWorkers; i++ {
start := i * chunkSize
end := start + chunkSize
if i == numWorkers-1 {
end = len(depthData)
}
wg.Add(1)
go func(start, end int) {
defer wg.Done()
for y := start; y < end; y++ {
for x, depth := range depthData[y] {
if x >= 0 && x < len(flatSheet[0]) && y >= 0 && y < len(flatSheet) {
flatSheet[y][x] += depth
}
}
}
}(start, end)
}
wg.Wait()
}
Call this function during the processing phase:
processMIDSDepthParallel(flatSheet, input.MIDSDepth)
Smoothing the Flat Sheet
After processing all inputs, you can apply a smoothing algorithm to the flat sheet to ensure a more natural representation of the spatial model. For example, you can use a simple averaging filter (box blur):
func smoothFlatSheet(flatSheet [][]float64) [][]float64 { height := len(flatSheet) width := len(flatSheet[0]) smoothedSheet := make([][]float64, height) for i := range smoothedSheet { smoothedSheet[i] = make([]float64, width) }
for y := 1; y < height-1; y++ {
for x := 1; x < width-1; x++ {
// Compute the average of the surrounding cells
smoothedSheet
AI-generated content may be incorrect continue 7. Improve Flat-Sheet Accuracy (Continued) Smoothing Algorithm
To smooth the flat sheet for a more natural representation, you can apply a simple averaging filter (box blur). This filter averages the values of the surrounding cells to smooth out sharp changes or noise.
Here’s how you can implement the smoothing function:
func smoothFlatSheet(flatSheet [][]float64) [][]float64 { height := len(flatSheet) width := len(flatSheet[0]) smoothedSheet := make([][]float64, height) for i := range smoothedSheet { smoothedSheet[i] = make([]float64, width) }
// Iterate through each cell of the flat sheet
for y := 1; y < height-1; y++ {
for x := 1; x < width-1; x++ {
// Compute the average of the current cell and its 8 neighbors
sum := flatSheet[y][x] +
flatSheet[y-1][x] + flatSheet[y+1][x] +
flatSheet[y][x-1] + flatSheet[y][x+1] +
flatSheet[y-1][x-1] + flatSheet[y-1][x+1] +
flatSheet[y+1][x-1] + flatSheet[y+1][x+1]
smoothedSheet[y][x] = sum / 9.0
}
}
return smoothedSheet
}
Smoothing Application
After processing all input data and generating the flat sheet, apply the smoothing function to refine the spatial model:
flatSheet = smoothFlatSheet(flatSheet)
Export Flat Sheet as a 3D Model
If you need to use the spatial model for 3D simulations or visualization, you can export the flat sheet as a 3D mesh (e.g., an OBJ file). Here’s an example of how you can generate an OBJ file:
func exportFlatSheetToOBJ(flatSheet [][]float64, outputPath string) error { height := len(flatSheet) width := len(flatSheet[0])
objFile, err := os.Create(outputPath)
if err != nil {
return fmt.Errorf("failed to create OBJ file: %v", err)
}
defer objFile.Close()
// Write vertices
for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
z := flatSheet[y][x]
_, err := fmt.Fprintf(objFile, "v %d %d %.2f\n", x, y, z)
if err != nil {
return fmt.Errorf("failed to write vertex: %v", err)
}
}
}
// Write faces (connecting vertices)
for y := 0; y < height-1; y++ {
for x := 0; x < width-1; x++ {
v1 := y*width + x + 1
v2 := y*width + x + 2
v3 := (y+1)*width + x + 1
v4 := (y+1)*width + x + 2
_, err := fmt.Fprintf(objFile, "f %d %d %d %d\n", v1, v2, v4, v3)
if err != nil {
return fmt.Errorf("failed to write face: %v", err)
}
}
}
return nil
}
Call the function after generating the flat sheet:
if err := exportFlatSheetToOBJ(flatSheet, "/tmp/flat_sheet.obj"); err != nil
AI-generated content may be incorrect continue Export Flat Sheet as a 3D Model (Continued)
After exporting the flat sheet as an OBJ file, you can further utilize the generated 3D model for visualization or simulations in tools like Blender, Unity, or other 3D modeling software.
Here’s how you can integrate the OBJ export functionality into your Lambda handler:
func Handler(ctx context.Context, input InputData) (string, error) { // Validate the input data if err := validateInput(input); err != nil { return "", fmt.Errorf("input validation failed: %v", err) }
// Initialize the flat sheet
flatSheet := initializeFlatSheet(input)
// Process input data
if err := processYOLOObstacles(flatSheet, input.YOLOObstacles); err != nil {
return "", fmt.Errorf("failed to process YOLO obstacles: %v", err)
}
if err := processMIDSDepth(flatSheet, input.MIDSDepth); err != nil {
return "", fmt.Errorf("failed to process MIDS depth: %v", err)
}
if err := processORBMapPointsInBatches(flatSheet, input.ORBMapPoints, 100); err != nil {
return "", fmt.Errorf("failed to process ORB map points: %v", err)
}
// Smooth the flat sheet
flatSheet = smoothFlatSheet(flatSheet)
// Export the flat sheet to a 3D OBJ file
objFilePath := "/tmp/flat_sheet.obj"
if err := exportFlatSheetToOBJ(flatSheet, objFilePath); err != nil {
return "", fmt.Errorf("failed to export flat sheet to OBJ: %v", err)
}
// Optionally upload the OBJ file to S3 for further use
outputBucket := "your-s3-bucket-name"
outputKey := "flat_sheet.obj"
if err := uploadToS3(outputBucket, outputKey, objFilePath); err != nil {
return "", fmt.Errorf("failed to upload OBJ file to S3: %v", err)
}
return fmt.Sprintf("Flat sheet processed and exported to OBJ. Uploaded to S3: %s/%s", outputBucket, outputKey), nil
}
To upload the generated OBJ file to S3, use the AWS SDK in Go:
import ( "bytes" "os" "github.com/aws/aws-sdk-go/aws" "github.com/aws/aws-sdk-go/aws/session" "github.com/aws/aws-sdk-go/service/s3" )
func uploadToS3(bucket, key, filePath string) error { sess := session.Must(session.NewSession()) svc := s3.New(sess)
// Read the file
file, err := os.Open(filePath)
if err != nil {
return fmt.Errorf("failed to open file: %v", err)
}
defer file.Close()
fileContent, err := ioutil.ReadAll(file)
if err != nil {
return fmt.Errorf("failed to read file: %v", err)
}
// Upload the file to S3
_, err = svc.PutObject(&s3.PutObjectInput{
Bucket: aws.String(bucket),
Key: aws.String(key),
Body: bytes.NewReader(fileContent),
ContentType: aws.String("application/octet-stream"),
})
if err != nil {
return fmt.Errorf("failed to upload file to S3: %v", err)
}
return nil
}
Run the Lambda function locally with simulated input and verify the generated OBJ file in the /tmp directory.
Example:
go run main.go
Testing on AWS
Invoke the Lambda function remotely using the AWS CLI:
AI-generated content may be incorrect continue Testing the Lambda Function (Continued) Testing on AWS
Once the Lambda function is deployed to AWS, you can test it using the AWS CLI or the AWS Management Console. Invoke the Lambda Function
Use the AWS CLI to invoke the Lambda function with a JSON payload, and specify the S3 bucket and key for the output:
aws lambda invoke
--function-name SpatialModelLambda
--payload '{
"yolo_obstacles": [
{"type": "tree", "bounding_box": [10, 20, 30, 40]},
{"type": "car", "bounding_box": [50, 60, 70, 80]}
],
"mids_depth": [
[0.5, 0.6, 0.7],
[0.3, 0.4, 0.5],
[0.1, 0.2, 0.3]
],
"orb_map_points": [
{"x": 25.0, "y": 35.0, "z": 5.0},
{"x": 55.0, "y": 65.0, "z": 10.0}
],
"output_bucket": "your-s3-bucket-name",
"output_key": "flat_sheet.obj"
}'
output.json
This will invoke the Lambda function and upload the generated flat_sheet.obj file to the specified S3 bucket and key. Check the Output
Verify the S3 Upload:
Go to the AWS Management Console, navigate to the specified S3 bucket, and confirm that the
flat_sheet.obj
file is uploaded.
Download the file and open it in a 3D modeling tool (e.g., Blender) to verify the spatial model.
Review Logs:
Check the AWS CloudWatch logs to verify the function's execution and debug any issues.
Use the following command to view the logs in real-time:
aws logs tail /aws/lambda/SpatialModelLambda --follow
Finalizing the Lambda Function
To ensure reliability and maintainability of your Lambda function:
Comprehensive Error Handling:
Ensure every function, such as
processInput
,
exportFlatSheetToOBJ
, and
uploadToS3
, returns detailed error messages.
Log errors in CloudWatch for easier debugging.
Monitor Performance:
Use AWS CloudWatch metrics to monitor function execution time, memory usage, and error rates.
Set up CloudWatch Alarms to notify you if the Lambda function fails or exceeds a threshold (e.g., timeout or high memory usage).
Test Various Input Sizes:
Test the Lambda function with both small and large input datasets to ensure scalability and performance.
Optimize grid resolution or batch sizes based on observed performance.
- Add Support for Real-Time Streaming
If the autonomous flight system requires real-time processing, integrate with Amazon Kinesis or AWS IoT Core to stream YOLO, MIDS, and ORB-SLAM3 data. The Lambda function can process each data frame as it arrives. 2. Use AWS Step Functions for Workflow Orchestration
For complex workflows (e.g., preprocessing data, generating spatial models, and storing results), use AWS Step Functions to orchestrate the steps and manage retries in case of failures. 3. Integrate with Machine Learning Models
Incorporate a machine learning model to enhance the spatial model's accuracy or make predictions based on the input data. For example:
Use a neural network to refine depth estimation or obstacle classification.
AI-generated content may be incorrect do all that
To implement everything we've discussed, here's a detailed step-by-step guide to setting up the Lambda function, integrating with AWS services, and implementing the required features. This guide assumes familiarity with AWS Lambda, Go programming, and AWS CLI.
- Lambda Function Code
Below is the complete Go code for the Lambda function, incorporating all the features we discussed: Lambda Function
This is actually where we are starting.
package main
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io/ioutil"
"math"
"os"
"sync"
"time"
"github.com/aws/aws-lambda-go/lambda"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/service/s3"
"github.com/aws/aws-sdk-go/service/dynamodb"
"github.com/aws/aws-sdk-go/service/dynamodb/dynamodbattribute"
)
// Input structure for YOLO, MIDS, and ORB-SLAM3 data
type InputData struct {
YOLOObstacles []YOLOObstacle `json:"yolo_obstacles"`
MIDSDepth [][]float64 `json:"mids_depth"`
ORBMapPoints []MapPoint `json:"orb_map_points"`
OutputBucket string `json:"output_bucket"`
OutputKey string `json:"output_key"`
}
type YOLOObstacle struct {
Type string `json:"type"`
BoundingBox [4]int `json:"bounding_box"` // [x_min, y_min, x_max, y_max]
}
type MapPoint struct {
X float64 `json:"x"`
Y float64 `json:"y"`
Z float64 `json:"z"`
}
// Output structure for the spatial model
type SpatialModel struct {
FlatSheet [][]float64 `json:"flat_sheet"`
}
// Validate the input
func validateInput(input InputData) error {
for _, obstacle := range input.YOLOObstacles {
if len(obstacle.BoundingBox) != 4 {
return fmt.Errorf("invalid bounding box: %+v", obstacle.BoundingBox)
}
}
for _, row := range input.MIDSDepth {
for _, depth := range row {
if depth < 0 {
return fmt.Errorf("depth value cannot be negative: %f", depth)
}
}
}
for _, point := range input.ORBMapPoints {
if math.IsNaN(point.X) || math.IsNaN(point.Y) || math.IsNaN(point.Z) {
return fmt.Errorf("invalid ORB-SLAM3 map point: %+v", point)
}
}
return nil
}
// Initialize flat sheet dynamically
func initializeFlatSheet(input InputData) [][]float64 {
width, height := dynamicResolution(input)
flatSheet := make([][]float64, height)
for i := range flatSheet {
flatSheet[i] = make([]float64, width)
}
return flatSheet
}
// Dynamic resolution based on input complexity
func dynamicResolution(input InputData) (int, int) {
numObstacles := len(input.YOLOObstacles)
numMapPoints := len(input.ORBMapPoints)
width, height := 100, 100
if numObstacles > 50 || numMapPoints > 1000 {
width, height = 200, 200
} else if numObstacles > 20 || numMapPoints > 500 {
width, height = 150, 150
}
return width, height
}
// Process YOLO obstacles
func processYOLOObstacles(flatSheet [][]float64, obstacles []YOLOObstacle) error {
for _, obstacle := range obstacles {
xMin, yMin, xMax, yMax := obstacle.BoundingBox[0], obstacle.BoundingBox[1], obstacle.BoundingBox[2], obstacle.BoundingBox[3]
if xMin < 0 || yMin < 0 || xMax >= len(flatSheet[0]) || yMax >= len(flatSheet) {
return fmt.Errorf("bounding box out of range: %+v", obstacle.BoundingBox)
}
// Mark the obstacle region on the flat sheet
for y := yMin; y <= yMax; y++ {
for x := xMin; x <= xMax; x++ {
flatSheet[y][x] += 1.0
}
}
}
return nil
}
// Process MIDS depth data
func processMIDSDepth(flatSheet [][]float64, midsDepth [][]float64) error {
for y, row := range midsDepth {
for x, depth := range row {
if x >= 0 && x < len(flatSheet[0]) && y >= 0 && y < len(flatSheet) {
flatSheet[y][x] += depth
}
}
}
return nil
}
// Process ORB-SLAM3 map points in batches
func processORBMapPointsInBatches(flatSheet [][]float64, mapPoints []MapPoint, batchSize int) error {
totalPoints := len(mapPoints)
for i := 0; i < totalPoints; i += batchSize {
end := i + batchSize
if end > totalPoints {
end = totalPoints
}
batch := mapPoints[i:end]
for _, point := range batch {
x := int(math.Round(point.X))
y := int(math.Round(point.Y))
z := point.Z
if x >= 0 && x < len(flatSheet[0]) && y >= 0 && y < len(flatSheet) {
flatSheet[y][x] += z
}
}
}
return nil
}
// Smooth the flat sheet
func smoothFlatSheet(flatSheet [][]float64) [][]float64 {
height := len(flatSheet)
width := len(flatSheet[0])
smoothedSheet := make([][]float64, height)
for i := range smoothedSheet {
smoothedSheet[i] = make([]float64, width)
}
for y := 1; y < height-1; y++ {
for x := 1; x < width-1; x++ {
sum := flatSheet[y][x] +
flatSheet[y-1][x] + flatSheet[y+1][x] +
flatSheet[y][x-1] + flatSheet[y][x+1] +
flatSheet[y-1][x-1] + flatSheet[y-1][x+1] +
flatSheet[y+1][x-1] + flatSheet[y+1][x+1]
smoothedSheet[y][x] = sum / 9.0
}
}
return smoothedSheet
}
// Export flat sheet as a 3D OBJ file
func exportFlatSheetToOBJ(flatSheet [][]float64, outputPath string) error {
height := len(flatSheet)
width := len(flatSheet[0])
objFile, err := os.Create(outputPath)
if err != nil {
return fmt.Errorf("failed to create OBJ file: %v", err)
}
defer objFile.Close()
// Write vertices
for y := 0; y < height; y++ {
for x := 0; x < width; x++ {
z := flatSheet[y][x]
_, err := fmt.Fprintf(objFile, "v %d %d %.2f\n", x, y, z)
if err != nil {
return fmt.Errorf("failed to write vertex: %v", err)
}
}
}
// Write faces (connecting vertices)
for y := 0; y < height-1; y++ {
for x := 0; x < width-1; x++ {
v1 := y*width + x + 1
v2 := y*width + x + 2
v3 := (y+1)*width + x + 1
v4 := (y+1)*width + x + 2
_, err := fmt.Fprintf(objFile, "f %d %d %d %d\n", v1, v2, v4, v3)
if err != nil {
return fmt.Errorf("failed to write face: %v", err)
}
}
}
return nil
}
// Upload the OBJ file to S3
func uploadToS3(bucket, key, filePath string) error {
sess := session.Must(session.NewSession())
svc := s3.New(sess)
// Read the file
file, err := os.Open(filePath)
if err != nil {
return fmt.Errorf("failed to open file: %v", err)
}
defer file.Close()
fileContent, err := ioutil.ReadAll(file)
if err != nil {
return fmt.Errorf("failed to read file: %v", err)
}
// Upload the file to S3
_, err = svc.PutObject(&s3.PutObjectInput{
Bucket: aws.String(bucket),
Key: aws.String(key),
Body: bytes.NewReader(fileContent),
ContentType: aws.String("application/octet-stream"),
})
if err != nil {
return fmt.Errorf("failed to upload file to S3: %v", err)
}
return nil
}
// Save spatial model to DynamoDB
type DynamoDBItem struct {
ModelID string `json:"model_id"`
Timestamp string `json:"timestamp"`
FlatSheet string `json:"flat_sheet"` // Stored as a JSON string
}
func saveToDynamoDB(modelID string, output SpatialModel) error {
sess := session.Must(session.NewSession())
svc := dynamodb.New(sess)
// Convert FlatSheetData to JSON
flatSheetJSON, err := json.Marshal(output.FlatSheet)
if err != nil {
return fmt.Errorf("failed to serialize flat sheet: %v", err)
}
// Create DynamoDB item
item := DynamoDBItem{
ModelID: modelID,
Timestamp: time.Now().Format(time.RFC3339),
FlatSheet: string(flatSheetJSON),
}
// Convert the item to a DynamoDB map
ddbItem, err := dynamodbattribute.MarshalMap(item)
if err != nil {
return fmt.Errorf("failed to marshal DynamoDB item: %v", err)
}
// Put the item into the DynamoDB table
input := &dynamodb.PutItemInput{
TableName: aws.String("SpatialModels"), // Replace with your table name
Item: ddbItem,
}
_, err = svc.PutItem(input)
if err != nil {
return fmt.Errorf("failed to write item to DynamoDB: %v", err)
}
return nil
}
// Lambda handler
func Handler(ctx context.Context, input InputData) (string, error) {
// Validate the input data
if err := validateInput(input); err != nil {
return "", fmt.Errorf("input validation failed: %v", err)
}
// Initialize the flat sheet
flatSheet := initializeFlatSheet(input)
// Process input data
if err := processYOLOObstacles(flatSheet, input.YOLOObstacles); err != nil {
return "", fmt.Errorf("failed to process YOLO obstacles: %v", err)
}
if err := processMIDSDepth(flatSheet, input.MIDSDepth); err != nil {
return "", fmt.Errorf("failed to process MIDS depth: %v", err)
}
if err := processORBMapPointsInBatches(flatSheet, input.ORBMapPoints, 100); err != nil {
return "", fmt.Errorf("failed to process ORB map points: %v", err)
}
// Smooth the flat sheet
flatSheet = smoothFlatSheet(flatSheet)
// Export the flat sheet to a 3D OBJ file
objFilePath := "/tmp/flat_sheet.obj"
if err := exportFlatSheetToOBJ(flatSheet, objFilePath); err != nil {
return "", fmt.Errorf("failed to export flat sheet to OBJ: %v", err)
}
// Upload the OBJ file to S3
if err := uploadToS3(input.OutputBucket, input.OutputKey, objFilePath); err != nil {
return "", fmt.Errorf("failed to upload OBJ file to S3: %v", err)
}
// Save the spatial model to DynamoDB
modelID := "model-" + time.Now().Format("20060102150405") // Unique model ID
output := SpatialModel{FlatSheet: flatSheet}
if err := saveToDynamoDB(modelID, output); err != nil {
return "", fmt.Errorf("failed to save to DynamoDB: %v", err)
}
return fmt.Sprintf("Flat sheet processed and exported to OBJ. Uploaded to S3: %s/%s. Saved to DynamoDB with ModelID: %s", input.OutputBucket, input.OutputKey, modelID), nil
}
func main() {
lambda.Start(Handler)
}- Setting Up AWS Resources
To complete the setup, you’ll need to configure the following AWS resources.
-
DynamoDB Table
Create a DynamoDB table to store the spatial model data. Use the AWS Management Console or CLI to create a table named SpatialModels with the following schema: Partition Key: ModelID (String)
aws dynamodb create-table
--table-name SpatialModels
--attribute-definitions AttributeName=ModelID,AttributeType=S
--key-schema AttributeName=ModelID,KeyType=HASH
--billing-mode PAY_PER_REQUEST
-
S3 Bucket
Create an S3 bucket to store the OBJ files.
aws s3api create-bucket --bucket your-s3-bucket-name --region us-east-1
-
IAM Role
Create an IAM Role for the Lambda function with the following policies: S3 Full Access: To upload OBJ files. DynamoDB Full Access: To write spatial model data. CloudWatch Logs: To log Lambda function executions.
You can create the role using the AWS Management Console or CLI:
aws iam create-role --role-name LambdaSpatialModelRole --assume-role-policy-document file://trust-policy.json
Attach the required policies:
aws iam attach-role-policy --role-name LambdaSpatialModelRole --policy-arn arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess aws iam attach-role-policy --role-name LambdaSpatialModelRole --policy-arn arn:aws:iam::aws:policy/AmazonS3FullAccess aws iam attach-role-policy --role-name LambdaSpatialModelRole --policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
- Deploying the Lambda Function
- Build the Go Binary
Compile your Go Lambda function for AWS Lambda AI-generated content may be incorrect continue
- Build the Go Binary
AWS Lambda requires the binary to be compiled for the linux/amd64 architecture. Run the following command to build your Go binary:
GOOS=linux GOARCH=amd64 go build -o main main.go
- Package the Binary
Zip the compiled binary into a file that can be deployed to AWS Lambda:
zip function.zip main
- Create the Lambda Function
Use the AWS CLI to create the Lambda function and associate it with the IAM role you created earlier ( LambdaSpatialModelRole ):
aws lambda create-function
--function-name SpatialModelLambda
--runtime provided.al2
--handler main
--zip-file fileb://function.zip
--role arn:aws:iam:::role/LambdaSpatialModelRole
Replace with your AWS account ID. 4. Update the Lambda Function
If you need to update the function after making changes to the code, recompile the binary, re-zip it, and use the following command to update the function:
aws lambda update-function-code
--function-name SpatialModelLambda
--zip-file fileb://function.zip
- Testing the Lambda Function
- Test Locally
Run the Lambda function locally with example input to ensure everything works as expected. Use the following input.json file:
{ "yolo_obstacles": [ {"type": "tree", "bounding_box": [10, 20, 30, 40]}, {"type": "car", "bounding_box": [50, 60, 70, 80]} ], "mids_depth": [ [0.5, 0.6, 0.7], [0.3, 0.4, 0.5], [0.1, 0.2, 0.3] ], "orb_map_points": [ {"x": 25.0, "y": 35.0, "z": 5.0}, {"x": 55.0, "y": 65.0, "z": 10.0} ], "output_bucket": "your-s3-bucket-name", "output_key": "flat_sheet.obj" }
Run the Lambda function locally:
go run main.go < input.json
- Invoke the Function Using AWS CLI
You can invoke the Lambda function remotely once it is deployed. Use the following command:
aws lambda invoke
--function-name SpatialModelLambda
--payload file://input.json
output.json
Check the output.json file for the response. 3. Verify the Outputs
S3: Verify that the
flat_sheet.obj
file is uploaded to your S3 bucket.
DynamoDB: Check the
SpatialModels
table in DynamoDB for the saved flat sheet data.
Logs: Use CloudWatch to debug or monitor the function execution.
aws logs tail /aws/lambda/SpatialModelLambda --follow
- Monitoring and Optimization
- CloudWatch Metrics
Monitor the Lambda function's performance using AWS CloudWatch Metrics:
Execution Time: Ensure the function completes within the allocated time.
Memory Usage: Check if the memory allocation needs to be increased.
Error Rate: Monitor for any errors during execution.
- Set Up Alarms
Use CloudWatch Alarms to notify you if the function fails or exceeds thresholds (e.g., execution time or memory usage).
Example AI-generated content may be incorrect continue 5. Monitoring and Optimization (Continued) Set Up CloudWatch Alarms
You can use CloudWatch Alarms to monitor the Lambda function and receive notifications for critical metrics like execution duration, error rates, or invocation count.
For example, to create an alarm for high error rates:
aws cloudwatch put-metric-alarm
--alarm-name SpatialModelLambdaErrorAlarm
--metric-name Errors
--namespace AWS/Lambda
--statistic Sum
--period 60
--threshold 1
--comparison-operator GreaterThanThreshold
--dimensions Name=FunctionName,Value=SpatialModelLambda
--evaluation-periods 1
--alarm-actions arn:aws:sns:::YourSNSTopic
--region
Replace and with your AWS region and account ID, and make sure you've set up an SNS topic to send notifications. CloudWatch Dashboard
Create a CloudWatch Dashboard to visualize key metrics for your Lambda function, including:
Invocation count
Error rate
Average execution duration
Memory usage
aws cloudwatch create-dashboard --dashboard-name SpatialModelDashboard --dashboard-body file://dashboard.json
Replace dashboard.json with a JSON file defining the dashboard layout. 6. Future Enhancements
- Real-Time Streaming Integration
If the autonomous flight system requires real-time processing, integrate AWS services like Amazon Kinesis or AWS IoT Core to stream YOLO, MIDS, and ORB-SLAM3 data. The Lambda function can process each data frame as it arrives. Example Integration With Kinesis:
Set up a Kinesis Data Stream for input data.
Modify the Lambda function to read data from Kinesis:
import (
"github.com/aws/aws-lambda-go/events"
)
func KinesisHandler(ctx context.Context, kinesisEvent events.KinesisEvent) error {
for _, record := range kinesisEvent.Records {
data := record.Kinesis.Data
var input InputData
if err := json.Unmarshal(data, &input); err != nil {
return fmt.Errorf("failed to parse Kinesis record: %v", err)
}
// Process the input data (reusing spatial model logic)
_, err := Handler(ctx, input)
if err != nil {
return fmt.Errorf("failed to process input: %v", err)
}
}
return nil
}
- Workflow Orchestration With Step Functions
For complex workflows, use AWS Step Functions to orchestrate tasks:
Preprocessing YOLO, MIDS, and ORB-SLAM3 data.
Generating spatial models.
Uploading OBJ files to S3.
Saving data to DynamoDB.
Create a Step Functions state machine with Lambda function integrations for each step. 7. Deployment Automation
To simplify deployment and updates, use AWS CloudFormation or Terraform. Define resources like Lambda functions, S3 buckets, DynamoDB tables, and IAM roles in a configuration file, allowing you to deploy or update infrastructure as code. Example CloudFormation Template
Resources: SpatialModelLambda: Type: AWS::Lambda::Function Properties: FunctionName: SpatialModelLambda Handler: main Runtime: provided.al2 Code: S3Bucket: your-code-bucket S3Key: function.zip Role: arn:aws:iam:::role/LambdaSpatialModelRole MemorySize: 512 Timeout: 120
SpatialModelsTable: Type: AWS::DynamoDB::Table Properties: Table
AI-generated content may be incorrect continue
Here’s the continuation of the CloudFormation template and the complete deployment automation process: 7. Deployment Automation (Continued) CloudFormation Template
Resources: SpatialModelLambda: Type: AWS::Lambda::Function Properties: FunctionName: SpatialModelLambda Handler: main Runtime: provided.al2 Code: S3Bucket: your-code-bucket S3Key: function.zip Role: arn:aws:iam:::role/LambdaSpatialModelRole MemorySize: 512 Timeout: 120
SpatialModelsTable: Type: AWS::DynamoDB::Table Properties: TableName: SpatialModels AttributeDefinitions: - AttributeName: ModelID AttributeType: S KeySchema: - AttributeName: ModelID KeyType: HASH BillingMode: PAY_PER_REQUEST
SpatialModelBucket: Type: AWS::S3::Bucket Properties: BucketName: your-s3-bucket-name
LambdaExecutionRole: Type: AWS::IAM::Role Properties: RoleName: LambdaSpatialModelRole AssumeRolePolicyDocument: Version: "2012-10-17" Statement: - Effect: Allow Principal: Service: lambda.amazonaws.com Action: sts:AssumeRole Policies: - PolicyName: LambdaS3Access PolicyDocument: Version: "2012-10-17" Statement: - Effect: Allow Action: - s3:PutObject - s3:GetObject Resource: "arn:aws:s3:::your-s3-bucket-name/" - PolicyName: LambdaDynamoDBAccess PolicyDocument: Version: "2012-10-17" Statement: - Effect: Allow Action: - dynamodb:PutItem - dynamodb:GetItem Resource: "arn:aws:dynamodb:::table/SpatialModels" - PolicyName: LambdaBasicExecution PolicyDocument: Version: "2012-10-17" Statement: - Effect: Allow Action: - logs:CreateLogGroup - logs:CreateLogStream - logs:PutLogEvents Resource: "arn:aws:logs:::*"
Outputs: LambdaFunction: Value: !GetAtt SpatialModelLambda.FunctionName Description: Name of the Lambda function S3Bucket: Value: !Ref SpatialModelBucket Description: Name of the S3 bucket DynamoDBTable: Value: !Ref SpatialModelsTable Description: Name of the DynamoDB table
Deploy CloudFormation Template
Save the YAML template to a file, e.g.,
spatial-model-stack.yaml
.
Use the AWS CLI to deploy the stack:
aws cloudformation create-stack
--stack-name SpatialModelStack
--template-body file://spatial-model-stack.yaml
--capabilities CAPABILITY_NAMED_IAM
To update the stack later (e.g., when the Lambda function changes):
aws cloudformation update-stack
--stack-name SpatialModelStack
--template-body file://spatial-model-stack.yaml
--capabilities CAPABILITY_NAMED_IAM
- Testing and Validation
- Functional Testing
Test the Lambda function for various scenarios:
Small Inputs: Verify that the function handles minimal data correctly.
Large Inputs: Test with large MIDS depth maps or dense ORB-SLAM3 point clouds
AI-generated content may be incorrect continue
- Functional Testing (Continued)
To ensure robustness, test the Lambda function across a variety of input scenarios:
Edge Cases:
Provide empty inputs for YOLO obstacles, MIDS depth, and ORB-SLAM3 points and verify the function handles them gracefully without errors.
Provide invalid data (e.g., negative bounding box values, out-of-range coordinates) and confirm that validation catches these cases with appropriate error messages.
Performance Tests:
Use large inputs, such as:
A dense depth map (e.g.,
1000x1000
grid).
A high number of YOLO obstacles (e.g.,
200+
obstacles).
A large number of ORB-SLAM3 map points (e.g.,
10,000+
points).
Measure execution time and memory usage to ensure the function performs within AWS Lambda limits.
- Integration Testing
Test the entire pipeline, including S3 uploads and DynamoDB writes:
Verify that the
flat_sheet.obj
file is correctly generated and stored in the designated S3 bucket.
Check DynamoDB for the spatial model data, ensuring the correct
ModelID
and timestamp are stored.
- Visualization
Download the flat_sheet.obj file from S3 and load it into a 3D modeling tool (e.g., Blender) to verify the spatial model's accuracy. Ensure that the model reflects the input data (e.g., YOLO obstacles are represented as deformations in the sheet). 9. Optimization and Scalability
- Optimize Memory Usage
If testing reveals high memory usage for large inputs:
Reduce the resolution of the flat sheet for less complex scenarios.
Use batch processing for large datasets (as implemented in the ORB-SLAM3 processing).
- Optimize Execution Time
To optimize execution time:
Tune the batch size for ORB-SLAM3 point processing.
Parallelize the processing of large depth maps or YOLO obstacles using Go routines.
- Scale for High Concurrency
If the Lambda function will be invoked frequently (e.g., from multiple autonomous drones):
Use Provisioned Concurrency to reduce cold-start times:
aws lambda put-provisioned-concurrency-config
--function-name SpatialModelLambda
--qualifier $LATEST
--provisioned-concurrent-executions 10
- Logging and Monitoring
- Log Structure
Ensure that logs are structured and include critical information:
Input details (e.g., the number of YOLO obstacles, depth map size).
Processing stages (e.g., "Processing YOLO obstacles", "Smoothing flat sheet").
Errors (with detailed stack traces).
Example:
log.Printf("Processing YOLO obstacles: %d obstacles provided", len(input.YOLOObstacles)) log.Printf("Flat sheet initialized with dimensions: %dx%d", len(flatSheet), len(flatSheet[0]))
- Monitor Key Metrics
Use CloudWatch Metrics to monitor:
Error Rate: Percentage of failed invocations.
Duration: Average execution time.
Throttles: Number of times the function exceeds concurrency limits.
Memory Usage: To ensure the function remains within allocated memory.
- Set Up Alerts
Configure CloudWatch Alarms for the following:
Error Rate > 1%: Notify via SNS.
Execution Duration > 90% of Timeout: Indicates potential inefficiencies.
- Future Enhancements
- Real-Time Processing
Integrate Amazon Kinesis or AWS IoT Core to handle real-time data streams for autonomous flight systems. This allows the Lambda function to process data on AI-generated content may be incorrect continue 11. Future Enhancements (Continued)
- Real-Time Processing with Kinesis
Integrate Amazon Kinesis for real-time data streaming to handle continuous input from autonomous flight systems. Here's how you can achieve this:
Set Up Kinesis Data Stream:
Create a Kinesis Data Stream to ingest YOLO, MIDS, and ORB-SLAM3 data in real time.
aws kinesis create-stream \
--stream-name SpatialModelStream \
--shard-count 1
Modify the Lambda Function: Update the Lambda function to process streaming data from Kinesis.
import (
"github.com/aws/aws-lambda-go/events"
)
func KinesisHandler(ctx context.Context, kinesisEvent events.KinesisEvent) error {
for _, record := range kinesisEvent.Records {
data := record.Kinesis.Data
var input InputData
if err := json.Unmarshal(data, &input); err != nil {
return fmt.Errorf("failed to parse Kinesis record: %v", err)
}
// Process the input data (reusing spatial model logic)
_, err := Handler(ctx, input)
if err != nil {
return fmt.Errorf("failed to process input: %v", err)
}
}
return nil
}
Connect Lambda to Kinesis:
Create an event source mapping between the Kinesis stream and the Lambda function.
aws lambda create-event-source-mapping \
--function-name SpatialModelLambda \
--batch-size 100 \
--event-source-arn arn:aws:kinesis:<region>:<account-id>:stream/SpatialModelStream
- Workflow Orchestration with Step Functions
For complex workflows, integrate AWS Step Functions to orchestrate preprocessing, spatial model generation, and storage. Define a state machine to manage the workflow:
Step 1: Preprocess YOLO, MIDS, and ORB-SLAM3 data.
Step 2: Generate the spatial model (Lambda function).
Step 3: Export and upload the OBJ file to S3.
Step 4: Save spatial model metadata to DynamoDB.
Here’s an example Step Functions definition:
{ "Comment": "State machine for spatial model generation", "StartAt": "PreprocessData", "States": { "PreprocessData": { "Type": "Task", "Resource": "arn:aws:lambda:::function:PreprocessDataLambda", "Next": "GenerateSpatialModel" }, "GenerateSpatialModel": { "Type": "Task", "Resource": "arn:aws:lambda:::function:SpatialModelLambda", "Next": "UploadOBJToS3" }, "UploadOBJToS3": { "Type": "Task", "Resource": "arn:aws:lambda:::function:UploadOBJToS3Lambda", "Next": "SaveToDynamoDB" }, "SaveToDynamoDB": { "Type": "Task", "Resource": "arn:aws:lambda:::function:SaveToDynamoDBLambda", "End": true } } }
Deploy the Step Functions state machine using the AWS CLI:
aws stepfunctions create-state-machine
--name SpatialModelWorkflow
--definition file://state-machine-definition.json
--role-arn arn:aws:iam:::role/StepFunctionsExecutionRole
AI-generated content may be incorrect continue 11. Future Enhancements (Continued) 2. Workflow Orchestration with Step Functions (Continued)
Once you have the Step Functions state machine configured and deployed, you can trigger it with an input JSON payload. This payload should include the data required for each step, such as YOLO obstacles, MIDS depth, and ORB-SLAM3 points. Trigger the State Machine
Use the AWS CLI to start the state machine execution:
aws stepfunctions start-execution
--state-machine-arn arn:aws:states:::stateMachine:SpatialModelWorkflow
--input '{
"yolo_obstacles": [
{"type": "tree", "bounding_box": [10, 20, 30, 40]},
{"type": "car", "bounding_box": [50, 60, 70, 80]}
],
"mids_depth": [
[0.5, 0.6, 0.7],
[0.3, 0.4, 0.5],
[0.1, 0.2, 0.3]
],
"orb_map_points": [
{"x": 25.0, "y": 35.0, "z": 5.0},
{"x": 55.0, "y": 65.0, "z": 10.0}
],
"output_bucket": "your-s3-bucket-name",
"output_key": "flat_sheet.obj"
}'
Monitor the execution in the AWS Step Functions console to ensure all tasks are processed successfully. Benefits of Step Functions
Retry Logic: Automatically retries failed tasks based on defined policies.
Visibility: Provides a graphical view of the workflow, making it easier to debug.
Scalability: Handles large-scale workflows involving multiple Lambda functions.
- Real-Time Visualization
Integrate real-time visualization of the spatial model for monitoring purposes. For instance, upload an OBJ file to Amazon S3 and use a web-based 3D viewer (e.g., Three.js) to visualize the model. Steps for Real-Time Visualization:
Upload OBJ File to S3: The Lambda function already uploads the generated
flat_sheet.obj
file to S3.
Host a Web Application: Use an S3 static website to host a simple web-based 3D viewer using Three.js.
Render the OBJ File: Use Three.js to fetch and render the OBJ file from the S3 bucket. Example Three.js code to load an OBJ file:
import * as THREE from 'three';
import { OBJLoader } from 'three/examples/jsm/loaders/OBJLoader.js';
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
const objLoader = new OBJLoader();
objLoader.load(
'https://<your-s3-bucket-name>.s3.<region>.amazonaws.com/flat_sheet.obj',
(object) => {
scene.add(object);
},
(xhr) => {
console.log((xhr.loaded / xhr.total) * 100 + '% loaded');
},
(error) => {
console.error('An error occurred while loading the OBJ file', error);
}
);
camera.position.z = 5;
function animate() {
requestAnimationFrame(animate);
AI-generated content may be incorrect continue
renderer.render(scene, camera);
}
animate();
Enable CORS in S3: To allow the web application to fetch the OBJ file from S3, enable CORS (Cross-Origin Resource Sharing) on the S3 bucket:
Go to the S3 Console.
Select your bucket.
Navigate to the "Permissions" tab and edit the CORS configuration.
Add the following configuration:
<CORSConfiguration>
<CORSRule>
<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>
<AllowedHeader>*</AllowedHeader>
</CORSRule>
</CORSConfiguration>
Deploy the Web Application:
Upload your HTML, JavaScript, and other assets (e.g., Three.js library) to the same S3 bucket or a separate bucket configured as a static website.
Enable static website hosting for the bucket:
aws s3 website s3://your-s3-bucket-name/ --index-document index.html
Access the Viewer:
Open the static website URL in your browser to view the spatial model in 3D.
- Machine Learning Integration
Incorporate machine learning to enhance spatial modeling, such as:
Obstacle Classification: Use a pre-trained model (e.g., YOLOv5 or YOLOv8) to classify and prioritize obstacles.
Depth Prediction: Use a neural network to refine depth estimates from MIDS data.
Real-Time Path Planning: Integrate reinforcement learning to recommend flight paths based on the generated spatial model.
Steps to Integrate ML Models:
Deploy a Pre-Trained Model:
Use AWS SageMaker to host the ML model. For example, deploy a YOLOv5 model for obstacle detection.
Use the SageMaker endpoint to process incoming data and return predictions.
Invoke the Model from Lambda:
Add an AWS SDK call in the Lambda function to invoke the SageMaker endpoint:
import (
"github.com/aws/aws-sdk-go/service/sagemaker"
"github.com/aws/aws-sdk-go/aws/session"
"github.com/aws/aws-sdk-go/aws"
)
func invokeSageMakerEndpoint(endpointName string, payload []byte) ([]byte, error) {
sess := session.Must(session.NewSession())
svc := sagemaker.New(sess)
input := &sagemaker.InvokeEndpointInput{
EndpointName: aws.String(endpointName),
Body: payload,
ContentType: aws.String("application/json"),
}
result, err := svc.InvokeEndpoint(input)
if err != nil {
return nil, fmt.Errorf("failed to invoke SageMaker endpoint: %v", err)
}
return result.Body, nil
}
Process the Predictions: Use the predictions from the model to refine the flat sheet (e.g., by prioritizing certain obstacles or adjusting depth values).
- Summary of Completed Features
Here’s a consolidated list of features implemented in this project:
Lambda Function for Spatial Modeling:
Processes YOLO obstacles, MIDS depth, and ORB-SLAM3 mapping.
Outputs a spatial model as a deformed flat sheet.
Integration with AWS Services:
S3: Stores the spatial model as a 3D OBJ file.
DynamoDB: Saves metadata and flat sheet data for persistence.
CloudWatch: Monitors function execution and logs.
Step Functions Workflow:
Orchestrates preprocessing, spatial modeling, and data storage.
Real-Time Streaming
AI-generated content may be incorrect nio sagemaker to expensive tensor flow, pytorth, ray
If AWS SageMaker is too expensive for your use case, you can use open-source frameworks like TensorFlow, PyTorch, or Ray and deploy them on more cost-effective alternatives, such as AWS Lambda, Amazon EC2, or Amazon ECS/Fargate. Here's how you can integrate machine learning models with these frameworks while keeping costs low:
- Deploy TensorFlow or PyTorch Models Option 1: Use AWS Lambda for Lightweight Models
AWS Lambda can handle lightweight ML models as long as the model's size and inference time fit within Lambda limits (e.g., 15 minutes execution time and 10 GB memory). You can bundle the model with the Lambda function. Steps:
Export the Model: Train and export your model using TensorFlow or PyTorch.
TensorFlow:
import tensorflow as tf
model = tf.keras.models.load_model("your_model.h5")
model.save("saved_model/")
PyTorch:
import torch
model = torch.load("your_model.pth")
torch.save(model, "saved_model.pt")
Bundle the Model with the Lambda Function:
Package the model alongside your Lambda code and dependencies.
For TensorFlow, use
tensorflow-lite
for smaller inference binaries.
Install Dependencies Locally: Use Docker to build dependencies for AWS Lambda's
provided.al2
runtime:
docker run --rm -v $(pwd):/var/task lambci/lambda:build-python3.8 pip install tensorflow -t .
Modify the Lambda Function: Load the model and run inference in the Lambda function. Example for TensorFlow:
import (
"github.com/aws/aws-lambda-go/lambda"
"os/exec"
)
func RunInference(input []byte) ([]byte, error) {
cmd := exec.Command("python3", "model_inference.py")
cmd.Stdin = bytes.NewReader(input)
output, err := cmd.Output()
if err != nil {
return nil, fmt.Errorf("failed to run inference: %v", err)
}
return output, nil
}
func Handler(ctx context.Context, input InputData) (string, error) {
inputBytes, err := json.Marshal(input)
if err != nil {
return "", fmt.Errorf("failed to marshal input: %v", err)
}
inferenceResult, err := RunInference(inputBytes)
if err != nil {
return "", fmt.Errorf("failed to run inference: %v", err)
}
return string(inferenceResult), nil
}
func main() {
lambda.Start(Handler)
}
Option 2: Use Amazon EC2 or ECS for Larger Models
If your model exceeds Lambda's limits, deploy it on Amazon EC2 or ECS/Fargate for cost-effective inference. Steps:
Launch a Cost-Optimized EC2 Instance:
Select a GPU-enabled instance for models requiring high performance (e.g.,
g4dn.xlarge
).
For CPU-only inference, use general-purpose instances (e.g.,
t3.medium
).
Install TensorFlow or PyTorch: SSH into the instance and install your preferred framework:
sudo apt update && sudo apt install -y python3-pip
pip3 install tensorflow
pip3 install torch torchvision
Run an API Server: Use Flask, FastAPI, or another lightweight framework to expose the model for inference:
from flask import Flask, request, jsonify
import
AI-generated content may be incorrect continue
import torch import tensorflow as tf import numpy as np
model = torch.load("saved_model.pt") # For PyTorch
app = Flask(name)
@app.route("/infer", methods=["POST"]) def infer(): try: # Parse input data input_data = request.get_json() input_tensor = torch.tensor(input_data["input"]) # For PyTorch # input_tensor = np.array(input_data["input"]) # For TensorFlow
# Perform inference
with torch.no_grad(): # For PyTorch
output = model(input_tensor).tolist()
# output = model.predict(input_tensor).tolist() # For TensorFlow
# Return the result
return jsonify({"output": output})
except Exception as e:
return jsonify({"error": str(e)}), 500
if name == "main": app.run(host="0.0.0.0", port=8080)
Test the API Locally: Start the server:
python3 app.py
Send an inference request using
curl
:
curl -X POST -H "Content-Type: application/json" \
-d '{"input": [[1.0, 2.0, 3.0]]}' \
http://<your-ec2-instance-ip>:8080/infer
Automate Deployment with ECS:
Create a Docker container for the API server.
Deploy the container to Amazon ECS or AWS Fargate for scalable and cost-effective hosting.
Example Dockerfile:
FROM python:3.8-slim
WORKDIR /app
# Copy model and code
COPY saved_model.pt /app/
COPY app.py /app/
RUN pip install flask torch torchvision
CMD ["python", "app.py"]
Build and push the image to Amazon Elastic Container Registry (ECR):
docker build -t your-model-api .
docker tag your-model-api:latest <your-account-id>.dkr.ecr.<region>.amazonaws.com/your-model-api:latest
aws ecr get-login-password --region <region> | docker login --username AWS --password-stdin <your-account-id>.dkr.ecr.<region>.amazonaws.com
docker push <your-account-id>.dkr.ecr.<region>.amazonaws.com/your-model-api:latest
Deploy the container to ECS or Fargate.
- Distributed Inference with Ray
Ray is an open-source framework for distributed computing, enabling efficient and scalable deployment of ML models for inference. Option 1: Deploy a Ray Cluster
Set Up a Ray Cluster:
Launch a cluster of EC2 instances using Ray's autoscaling feature.
Install Ray on the instances:
pip install ray
Define a Ray Inference Task: Create a script to load and perform inference using your model:
import ray
import torch
# Initialize Ray
ray.init(address="auto")
# Define a Ray task for inference
@ray.remote
class ModelServer:
def __init__(self):
self.model = torch.load("saved_model.pt") # Load model into memory
def infer(self, input_data):
input_tensor = torch.tensor(input_data)
with torch.no_grad():
return self.model(input_tensor).tolist