From a4e0b8fd1c4f527fd3f1e36638cb186792096199 Mon Sep 17 00:00:00 2001 From: Rodrigo Bermudez Schettino Date: Sat, 9 Jul 2022 21:50:48 +0200 Subject: [PATCH] Readme: Prepare for release v0.1.3 Update readme and bump version in setup.cfg. --- README.md | 16 ++++++++++++---- setup.cfg | 2 +- 2 files changed, 13 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index ce132ce..178704f 100644 --- a/README.md +++ b/README.md @@ -6,6 +6,8 @@ Implementation of Layer-wise Relevance Propagation (LRP) algorithm together with quantitative evaluation metrics to compare heatmap explanations objectively. +Special thanks to Dr. Grégoire Montavon for his insights, which shaped the development of this project. + ## Features Explainability: @@ -77,12 +79,14 @@ python3 -m pip install lrp-pf-auc The PyPI distribution `lrp-pf-auc` provides the following two packages: `lrp` and `pf`. -The package name refers to Layer-wise Relevance Propagation (LRP), Pixel Flipping (PF), and Area Under the Curve (AUC) respectively. +The name `lrp-pf-auc` stands for Layer-wise Relevance Propagation (LRP), Pixel Flipping (PF), and Area Under the Curve (AUC) respectively. ## Usage Refer to [demo.ipynb](https://github.com/rodrigobdz/lrp/blob/main/demo.ipynb) for an example of Layer-wise Relevance Propagation (LRP), Pixel-Flipping (PF) and Area under the Curve (AUC). +Feel free to check out the Jupyter notebooks under [experiments/notebooks](https://github.com/rodrigobdz/lrp/tree/main/experiments/notebooks) for a chronological overview of the project. + ## Related Projects - Sequential LRP implementation: [gmontavon/lrp-tutorial](https://git.tu-berlin.de/gmontavon/lrp-tutorial) @@ -100,18 +104,18 @@ Cite as: - Plaintext: - > Rodrigo Bermúdez Schettino. (2022). rodrigobdz/lrp: v0.1.2 (v0.1.2). Zenodo. https://doi.org/10.5281/zenodo.6814117 + > Rodrigo Bermúdez Schettino. (2022). rodrigobdz/lrp: v0.1.3 (v0.1.3). Zenodo. https://doi.org/10.5281/zenodo.6814117 - BibTeX: ```text @software{rodrigo_bermudez_schettino_2022_6814117, author = {Rodrigo Bermúdez Schettino}, - title = {rodrigobdz/lrp: v0.1.2}, + title = {rodrigobdz/lrp: v0.1.3}, month = jul, year = 2022, publisher = {Zenodo}, - version = {v0.1.2}, + version = {v0.1.3}, doi = {10.5281/zenodo.6814117}, url = {https://doi.org/10.5281/zenodo.6814117} } @@ -121,6 +125,10 @@ Cite as: - The structure of this readme is based on [minimal-readme](https://github.com/rodrigobdz/minimal-readme) +- The `lrp` package uses [two customized files](https://github.com/rodrigobdz/lrp/tree/main/lrp/zennit) originally from [chr5tphr/zennit](https://github.com/chr5tphr/zennit). + +- The syntax for defining custom composites originates is inspired by [this discussion](https://github.com/chr5tphr/zennit/issues/76) on `zennit`'s repo. + This implementation is based on insights from: - LRP overview paper diff --git a/setup.cfg b/setup.cfg index 8d8a121..3a24f7b 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,6 +1,6 @@ [metadata] name = lrp_pf_auc -version = 0.1.2 +version = 0.1.3 description = Explain Neural Networks using Layer-wise Relevance Propagation and evaluate the explanations using Pixel-Flipping and Area Under the Curve. long_description = file: README.md long_description_content_type = text/markdown