-
Notifications
You must be signed in to change notification settings - Fork 2
/
frame_utils.py
170 lines (136 loc) · 4.72 KB
/
frame_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import re
from os.path import *
import cv2
import numpy as np
from PIL import Image
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
TAG_CHAR = np.array([202021.25], np.float32)
def readFlow(fn):
"""Read .flo file in Middlebury format"""
# Code adapted from:
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
# print 'fn = %s'%(fn)
with open(fn, "rb") as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic:
print("Magic number incorrect. Invalid .flo file")
return None
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
# print 'Reading %d x %d flo file\n' % (w, h)
data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
# Reshape data into 3D array (columns, rows, bands)
# The reshape here is for visualization, the original code is (w,h,2)
return np.resize(data, (int(h), int(w), 2))
def readPFM(file):
file = open(file, "rb")
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header == b"PF":
color = True
elif header == b"Pf":
color = False
else:
raise Exception("Not a PFM file.")
dim_match = re.match(rb"^(\d+)\s(\d+)\s$", file.readline())
if dim_match:
width, height = map(int, dim_match.groups())
else:
raise Exception("Malformed PFM header.")
scale = float(file.readline().rstrip())
if scale < 0: # little-endian
endian = "<"
scale = -scale
else:
endian = ">" # big-endian
data = np.fromfile(file, endian + "f")
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data
def writeFlow(filename, uv, v=None):
"""Write optical flow to file.
If v is None, uv is assumed to contain both u and v channels,
stacked in depth.
Original code by Deqing Sun, adapted from Daniel Scharstein.
"""
nBands = 2
if v is None:
assert uv.ndim == 3
assert uv.shape[2] == 2
u = uv[:, :, 0]
v = uv[:, :, 1]
else:
u = uv
assert u.shape == v.shape
height, width = u.shape
f = open(filename, "wb")
# write the header
f.write(TAG_CHAR)
np.array(width).astype(np.int32).tofile(f)
np.array(height).astype(np.int32).tofile(f)
# arrange into matrix form
tmp = np.zeros((height, width * nBands))
tmp[:, np.arange(width) * 2] = u
tmp[:, np.arange(width) * 2 + 1] = v
tmp.astype(np.float32).tofile(f)
f.close()
def readFlowKITTI(filename):
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR)
flow = flow[:, :, ::-1].astype(np.float32)
flow, valid = flow[:, :, :2], flow[:, :, 2]
MAX_FLOW = 695
MIN_FLOW = -1687
flow = (flow / np.iinfo(np.uint16).max) * (MAX_FLOW - MIN_FLOW) + MIN_FLOW
return flow, valid
def readDispKITTI(filename):
disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
valid = disp > 0.0
flow = np.stack([-disp, np.zeros_like(disp)], -1)
return flow, valid
def writeFlowKITTI(filename, uv):
uv = 64.0 * uv + 2**15
valid = np.ones([uv.shape[0], uv.shape[1], 1])
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
cv2.imwrite(filename, uv[..., ::-1])
def read_gen(file_name, pil=False):
ext = splitext(file_name)[-1]
if ext == ".png" or ext == ".jpeg" or ext == ".ppm" or ext == ".jpg":
return Image.open(file_name)
elif ext == ".bin" or ext == ".raw":
return np.load(file_name)
elif ext == ".flo":
return readFlow(file_name).astype(np.float32)
elif ext == ".pfm":
flow = readPFM(file_name).astype(np.float32)
if len(flow.shape) == 2:
return flow
else:
return flow[:, :, :-1]
return []
def read_gen_flow(file_name, pil=False):
ext = splitext(file_name)[-1]
if ext == ".jpeg" or ext == ".ppm" or ext == ".jpg":
return Image.open(file_name), None
elif ext == ".bin" or ext == ".raw":
return np.load(file_name), None
elif ext == ".flo":
return readFlow(file_name).astype(np.float32), None
elif ext == ".png":
return readFlowKITTI(file_name)
elif ext == ".pfm":
flow = readPFM(file_name).astype(np.float32)
if len(flow.shape) == 2:
return flow, None
else:
return flow[:, :, :-1], None
return []
def read_semantics(file_name):
return cv2.imread(file_name, cv2.IMREAD_UNCHANGED)