-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlininterp2.py
220 lines (189 loc) · 7.34 KB
/
lininterp2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
//
// Copyright (c) 2011 Ronaldo Carpio
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. The authors make no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
//
# classes for linear interpolation
# requires a regular grid
import scipy, types
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pyublas, _myfuncs
import itertools
import time
class LinInterp1D_2:
def __init__(self, grid1, fArray):
assert(len(grid1) == fArray.shape[0])
(self.m_grid1, self.m_FArray) = (grid1, fArray)
def __call__(self, z):
# this is a hack, should find a better way.
arg = z
if (not isinstance(z, types.FloatType)):
arg = z[0]
return _myfuncs.interp1d(self.m_grid1, self.m_FArray, arg)
class LinInterp1D(_myfuncs.Interp1D):
def __init__(self, grid1, fArray):
super(LinInterp1D,self).__init__(grid1, fArray)
(self.m_grid1, self.m_FArray) = (grid1, fArray)
class LinInterp2D_grid:
def __init__(self, grid1, grid2, fArray):
assert(len(grid1) == fArray.shape[0] and len(grid2) == fArray.shape[1])
(self.m_grid1, self.m_grid2, self.m_FArray) = (grid1, grid2, fArray)
# def __call__(self, x1, x2):
# return _myfuncs.interp2d(self.m_grid1, self.m_grid2, self.m_FArray, x1, x2)
def __call__(self, x):
return _myfuncs.interp2d(self.m_grid1, self.m_grid2, self.m_FArray, x[0], x[1])
class LinInterp2D_obj(_myfuncs.Interp2D):
def __init__(self, grid1, grid2, fArray):
super(LinInterp2D,self).__init__(grid1, grid2, fArray)
(self.m_grid1, self.m_grid2, self.m_FArray) = (grid1, grid2, fArray)
LinInterp2D = LinInterp2D_obj
class LinInterp3D:
def __init__(self, grid1, grid2, grid3, fArray):
assert(len(grid1) == fArray.shape[0] and len(grid2) == fArray.shape[1] and len(grid3) == fArray.shape[2])
(self.m_grid1, self.m_grid2, self.m_grid3, self.m_FArray) = (grid1, grid2, grid3, fArray)
def __call__(self, x1, x2, x3):
return _myfuncs.interp3d(self.m_grid1, self.m_grid2, self.m_grid3, self.m_FArray, x1, x2, x3)
def __call__(self, x):
return _myfuncs.interp3d(self.m_grid1, self.m_grid2, self.m_grid3, self.m_FArray, x[0], x[1], x[2])
# automatically figure out the right object based on the number of dimensions. only works for 1 to 3
def GetLinterpFnObj(stateGridList, fArray):
assert(len(stateGridList) == fArray.ndim); # check the shapes match
for i in range(len(stateGridList)):
assert(len(stateGridList[i]) == fArray.shape[i])
if (fArray.ndim == 1):
return LinInterp1D(stateGridList[0], fArray)
elif (fArray.ndim == 2):
return LinInterp2D(stateGridList[0], stateGridList[1], fArray)
elif (fArray.ndim == 3):
return LinInterp3D(stateGridList[0], stateGridList[1], stateGridList[2], fArray)
else:
assert(false)
def test_1D():
innerGrid = scipy.linspace(-5, 5, 20)
fArray = scipy.sin(innerGrid)
outerGrid = scipy.linspace(-10, 10, 66)
interp1 = LinInterp1D_2(innerGrid, fArray)
interp2 = LinInterp1D(innerGrid, fArray)
fig = plt.figure()
plt.plot(outerGrid, map(interp1, outerGrid))
fig = plt.figure()
plt.plot(outerGrid, map(interp2, outerGrid))
fig = plt.figure()
plt.plot(outerGrid, interp2(outerGrid))
def test_2D():
def f(x):
return scipy.sin(x[0] + 2*x[1])
coarseGrid1 = scipy.linspace(-5, 5, 80)
coarseGrid2 = scipy.linspace(-5, 5, 100)
fineGrid1 = scipy.linspace(-6, 6, 200)
fineGrid2 = scipy.linspace(-6, 6, 220)
[c_x1list, c_x2list] = zip(*itertools.product(coarseGrid1, coarseGrid2))
[f_x1list, f_x2list] = zip(*itertools.product(fineGrid1, fineGrid2))
fList = map(f, zip(c_x1list, c_x2list))
fArray = scipy.array(fList).reshape((len(coarseGrid1), len(coarseGrid2)))
# original
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(c_x1list, c_x2list, fList)
# interp1
fig = plt.figure()
ax = Axes3D(fig)
t1 = time.time()
interp1 = LinInterp2D_grid(coarseGrid1, coarseGrid2, fArray)
t2 = time.time()
for i in range(100):
interp_fList1 = map(interp1, zip(f_x1list, f_x2list))
t3 = time.time()
print("interp grid: setup %f sec, interp %f sec" % (t2-t1, t3-t2))
ax.scatter(f_x1list, f_x2list, interp_fList1)
# interp2
fig = plt.figure()
ax = Axes3D(fig)
t1 = time.time()
interp2 = LinInterp2D_obj(coarseGrid1, coarseGrid2, fArray)
t2 = time.time()
for i in range(100):
interp_fList2 = map(interp2, zip(f_x1list, f_x2list))
t3 = time.time()
print("interp obj: setup %f sec, interp %f sec" % (t2-t1, t3-t2))
ax.scatter(f_x1list, f_x2list, interp_fList2)
diff = scipy.array(interp_fList1) - scipy.array(interp_fList2)
return scipy.sum(diff*diff)
class LinInterp1D_irreg:
def __init__(self, grid, fArray):
(self.grid, self.fArray) = grid, fArray
self.slopes = (fArray[1:] - fArray[:-1]) / (grid[1:] - grid[:-1])
def interp(self, xi):
if (xi < self.grid[0]):
return self.fArray[0]
if (xi > self.grid[-1]):
return self.fArray[-1]
cell = binarySearchForCell(self.grid, xi)
result = self.fArray[cell] + (xi - self.grid[cell]) * self.slopes[cell]
return result
def binarySearchForCell(grid, x):
assert(len(grid) > 1)
left = 0
right = len(grid)-1
while (left+1 < right):
mid = int( (left+right)/2 )
if (x < grid[mid]):
right = mid
else:
left = mid
return left
# given an n-dim array f on grids, return an interpolated array on grids of a different size.
# f must have same dimensions as grids.
def interpolateArray(gridList1, gridList2, f):
assert(len(gridList1) == len(gridList2))
assert([len(g) for g in gridList1] == list(f.shape))
interpObj = GetLinterpFnObj(gridList1, f)
# iterate through each grid point, cycle through grid 0 on the innermost loop
#interpList = [interpObj(x) for x in itertools.product(*list(reversed(gridList2)))]
interpList = []
for x in itertools.product(*gridList2):
x2 = list(x)
z = interpObj(x2)
interpList.append(z)
#print((x, z))
result = scipy.array(interpList).reshape(tuple( [len(g) for g in gridList2] ))
return result
# return an array of fn applied to each grid point in gridList. last elt of gridList will be the innermost loop
def applyGrid(gridList, fn):
z_list = list(itertools.product(*gridList))
x_list = zip(*z_list)
f = scipy.array([fn(z) for z in z_list])
f = f.reshape(tuple( [len(g) for g in gridList] ))
return (x_list, f)
def test_interpolateArray():
grid_x = scipy.linspace(1, 5, 20)
grid_y = scipy.linspace(-1, 1, 10)
def fn(x):
return scipy.sin(x[0] + x[1])
((xlist, ylist), f) = applyGrid([grid_x, grid_y], fn)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xlist, ylist, f.ravel())
grid2_x = scipy.linspace(1, 5, 40)
grid2_y = scipy.linspace(-1, 1, 20)
f2 = interpolateArray([grid_x, grid_y], [grid2_x, grid2_y], f)
xy_list = itertools.product(grid2_x, grid2_y)
(xlist2, ylist2) = zip(*xy_list)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xlist2, ylist2, f2.ravel())
grid3_x = grid_x
grid3_y = grid_y
f3 = interpolateArray([grid2_x, grid2_y], [grid3_x, grid3_y], f2)
xy_list = itertools.product(grid3_x, grid3_y)
(xlist3, ylist3) = zip(*xy_list)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(xlist3, ylist3, f3.ravel())