-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlininterp.py
172 lines (137 loc) · 4.6 KB
/
lininterp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
//
// Copyright (c) 2011 Ronaldo Carpio
//
// Permission to use, copy, modify, distribute and sell this software
// and its documentation for any purpose is hereby granted without fee,
// provided that the above copyright notice appear in all copies and
// that both that copyright notice and this permission notice appear
// in supporting documentation. The authors make no representations
// about the suitability of this software for any purpose.
// It is provided "as is" without express or implied warranty.
//
# Filename: lininterp.py
# Author: John Stachurski
# Date: August 2009
# Corresponds to: Listing 6.4
from scipy import interp, interpolate, linspace, ogrid
class LinInterp:
"Provides linear interpolation in one dimension."
def __init__(self, X, Y):
"""Parameters: X and Y are sequences or arrays
containing the (x,y) interpolation points.
"""
self.X, self.Y = X, Y
def __call__(self, z):
"""Parameters: z is a number, sequence or array.
This method makes an instance f of LinInterp callable,
so f(z) returns the interpolation value(s) at z.
"""
return interp(z, self.X, self.Y)
# scipy.interpolate.interp2d is a class that provides 2d interpolation.
# construct an obj with args (x, y, z).
# use scipy.interpolate.Rbf for 3D
# construct with (list of coord1) (list of coord2) (list of coord3) (list of f)
# problem: doesn't work well with many points.
class Interp3DRBF:
def __init__(self, X1, X2, X3, f):
(self.X1, self.X2, self.X3, self.f) = (X1, X2, X3, f)
self.rbf = scipy.interpolate.Rbf(X1, X2, X3, f)
def __call__(self, x):
return self.rbf(x[0], x[1], x[2])
# trilinear interpolation
# f is a len(X1) x len(X2) x len(X3) array
class InterpTrilinear:
def __init__(self, X1, X2, X3, f):
(self.X1, self.X2, self.X3, self.f) = (X1, X2, X3, f)
def __call__(self, x):
return self.interp3d(self.X1, self.X2, self.X3, self.f, x[0], x[1], x[2])
# code from http://beowulf.cheme.cmu.edu/jacapo/9-numerics/9.4-curve-fitting/9.4.0-curve-fitting.html
def interp3d(self, xv,yv,zv,cd,xi,yi,zi):
'''
interpolate a cubic 3D grid defined by x,y,z,cd at the point
(xi,yi,zi)
'''
# assume regular grid.
# returns the index of the _cell_ (between grid points!)
# return -1 or len(vector)-2 if outside grid
def get_cell_index(value,vector):
dx = vector[1] - vector[0]
if (value < vector[0]):
return -1
if (value >= vector[-1]):
return len(vector)-2
return int((value - vector[0]) / dx)
def force_to_grid(x, vector):
if (x < vector[0]):
return vector[0]
if (x > vector[-1]):
return vector[-1]
return x
#xv = x[:,0,0]
#yv = y[0,:,0]
#zv = z[0,0,:]
a = force_to_grid(xi, xv)
b = force_to_grid(yi, yv)
c = force_to_grid(zi, zv)
i = get_cell_index(a,xv)
j = get_cell_index(b,yv)
k = get_cell_index(c,zv)
#x1 = x[i,j,k]
#x2 = x[i+1,j,k]
x1 = xv[i]
x2 = xv[i+1]
#y1 = y[i,j,k]
#y2 = y[i,j+1,k]
y1 = yv[j]
y2 = yv[j+1]
#z1 = z[i,j,k]
#z2 = z[i,j,k+1]
z1 = zv[k]
z2 = zv[k+1]
u1 = cd[i, j, k]
u2 = cd[i+1, j, k]
u3 = cd[i, j+1, k]
u4 = cd[i+1, j+1, k]
u5 = cd[i, j, k+1]
u6 = cd[i+1, j, k+1]
u7 = cd[i, j+1, k+1]
u8 = cd[i+1, j+1, k+1]
w1 = u2 + (u2-u1)/(x2-x1)*(a-x2)
w2 = u4 + (u4-u3)/(x2-x1)*(a-x2)
w3 = w2 + (w2-w1)/(y2-y1)*(b-y2)
w4 = u5 + (u6-u5)/(x2-x1)*(a-x1)
w5 = u7 + (u8-u7)/(x2-x1)*(a-x1)
w6 = w4 + (w5-w4)/(y2-y1)*(b-y1)
w7 = w3 + (w6-w3)/(z2-z1)*(c-z1)
u = w7
return u
# test trilinear interpolation
def f3(x, y, z):
return x+y+z
def test_3(a, b, c):
n = 10
grid1 = linspace(0, 1, n)
grid2 = linspace(0, 2, n)
grid3 = linspace(0, 3, n)
x1,x2,x3 = ogrid[0:n, 0:n, 0:n]
# use an array as index, only works if elts are all integers
f = f3(grid1[x1], grid2[x2], grid3[x3])
# x1 is a 1-axis vector, grid1[x1] picks out the corresponding elts of grid1, then inside f3, they are added
# broadcasting stretches the arrays
interpObj = InterpTrilinear(grid1, grid2, grid3, f)
z = interpObj([a, b, c])
print(z)
import _ponzi2_fns as p2
def test2_3(a, b, c):
n = 10
grid1 = linspace(0, 1, n)
grid2 = linspace(0, 2, n)
grid3 = linspace(0, 3, n)
x1,x2,x3 = ogrid[0:n, 0:n, 0:n]
# use an array as index, only works if elts are all integers
f = f3(grid1[x1], grid2[x2], grid3[x3])
# x1 is a 1-axis vector, grid1[x1] picks out the corresponding elts of grid1, then inside f3, they are added
# broadcasting stretches the arrays
z = p2.test3(grid1, grid2, grid3, f, a, b, c)
print(z)
# for splines, use scipy.interpolate.UnivariateSpline