-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathAgent Studio.py
363 lines (267 loc) · 10.5 KB
/
Agent Studio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Databricks notebook source
# MAGIC %pip install --upgrade gradio==3.38.0 fastapi==0.104 uvicorn==0.24
# MAGIC %pip install typing-extensions==4.8.0 --upgrade
# COMMAND ----------
dbutils.library.restartPython()
# COMMAND ----------
import os
os.environ['OPENAI_API_KEY'] = dbutils.secrets.get('agent_studio','open_ai')
os.environ['DATABRICKS_TOKEN'] = dbutils.secrets.get('agent_studio','databricks_token')
os.environ['DATABRICKS_HOST'] = dbutils.secrets.get('agent_studio','databricks_host')
os.environ['AGENT_STUDIO_PATH'] = dbutils.secrets.get('agent_studio','folder_path')
from Core.AgentCreator import AgentParser
import gradio as gr
cluster_id = dbutils.notebook.entry_point.getDbutils().notebook().getContext().tags().apply('clusterId')
# COMMAND ----------
# MAGIC %md ### Helper functions
# COMMAND ----------
def submit_prompt(prompt):
global message_thread
headers = {'Authorization': f'Bearer {databricks_token}', 'Content-Type': 'application/json'}
message_thread.append(
{
"role": "user",
"content": prompt
}
)
payload = {
"inputs": [{'messages': message_thread}]
}
response = requests.post(chatbot_model_serving_endpoint, headers=headers, json=payload)
if response.status_code == 200:
resp = response.json()
bot_message = resp['predictions']['choices'][0]['message']['content']
message_thread = resp['predictions']['thread']
return bot_message
else:
error = response.json()
raise ValueError(f'Error submitting job: {error}')
# COMMAND ----------
def generate_output(message: str,
chat_history: list[tuple[str, str]],
# system_prompt: str,
max_new_tokens: int = 300,
temperature: float = 0.8,
top_p: float = 0.95,
top_k: int = 50):
output = submit_prompt(message)
return output
# COMMAND ----------
# MAGIC %md
# MAGIC ### Let's host it in gradio
# COMMAND ----------
import json
from dataclasses import dataclass
import uvicorn
from fastapi import FastAPI
# COMMAND ----------
@dataclass
class ProxySettings:
proxy_url: str
port: str
url_base_path: str
class DatabricksApp:
def __init__(self, port):
# self._app = data_app
self._port = port
import IPython
self._dbutils = IPython.get_ipython().user_ns["dbutils"]
self._display_html = IPython.get_ipython().user_ns["displayHTML"]
self._context = json.loads(self._dbutils.notebook.entry_point.getDbutils().notebook().getContext().toJson())
# need to do this after the context is set
self._cloud = self.get_cloud()
# create proxy settings after determining the cloud
self._ps = self.get_proxy_settings()
self._fastapi_app = self._make_fastapi_app(root_path=self._ps.url_base_path.rstrip("/"))
self._streamlit_script = None
# after everything is set print out the url
def _make_fastapi_app(self, root_path) -> FastAPI:
fast_api_app = FastAPI(root_path=root_path)
@fast_api_app.get("/")
def read_main():
return {
"routes": [
{"method": "GET", "path": "/", "summary": "Landing"},
{"method": "GET", "path": "/status", "summary": "App status"},
{"method": "GET", "path": "/dash", "summary": "Sub-mounted Dash application"},
]
}
@fast_api_app.get("/status")
def get_status():
return {"status": "ok"}
return fast_api_app
def get_proxy_settings(self) -> ProxySettings:
if self._cloud.lower() not in ["aws", "azure"]:
raise Exception("only supported in aws or azure")
org_id = self._context["tags"]["orgId"]
org_shard = ""
# org_shard doesnt need a suffix of "." for dnsname its handled in building the url
if self._cloud.lower() == "azure":
org_shard_id = int(org_id) % 20
org_shard = f".{org_shard_id}"
cluster_id = self._context["tags"]["clusterId"]
url_base_path = f"/driver-proxy/o/{org_id}/{cluster_id}/{self._port}"
from dbruntime.databricks_repl_context import get_context
host_name = get_context().browserHostName
proxy_url = f"https://{host_name}/driver-proxy/o/{org_id}/{cluster_id}/{self._port}/"
return ProxySettings(
proxy_url=proxy_url,
port=self._port,
url_base_path=url_base_path
)
@property
def app_url_base_path(self):
return self._ps.url_base_path
def mount_gradio_app(self, gradio_app):
import gradio as gr
# gradio_app.queue()
gr.mount_gradio_app(self._fastapi_app, gradio_app, f"/gradio")
# self._fastapi_app.mount("/gradio", gradio_app)
self.display_url(self.get_gradio_url())
def get_cloud(self):
if self._context["extraContext"]["api_url"].endswith("azuredatabricks.net"):
return "azure"
return "aws"
def get_gradio_url(self):
# must end with a "/" for it to not redirect
return f'<a href="{self._ps.proxy_url}gradio/">Click to go to Gradio App!</a>'
def display_url(self, url):
self._display_html(url)
def run(self):
print(self.app_url_base_path)
uvicorn.run(self._fastapi_app, host="0.0.0.0", port=self._port)
# COMMAND ----------
def create_agent(yaml_str):
p = AgentParser(cluster_id)#'0822-172318-4b9whfq4'
gr.Info("Launching Agent. This will take a minute. A second notification will present when it's complete.")
msg = p.create_agent(yaml_str)
gr.Info(msg)
# COMMAND ----------
import os
import yaml
directory = os.path.join(os.environ.get('AGENT_STUDIO_PATH'), "Tool/yaml/")
#"/Volumes/robert_mosley/sql_ai/files/agent_studio/tool"
data_array = []
# Iterate through the files in the directory
for filename in os.listdir(directory):
filepath = os.path.join(directory, filename)
# Check if the file has a YAML extension
if filename.endswith(".yaml") or filename.endswith(".yml"):
# Load the YAML object from the file
with open(filepath, "r") as file:
yaml_obj = yaml.safe_load(file)
# Append the YAML object to the data array
data_array.append(yaml_obj)
# Use the data_array as needed
tools_ref = {t['tool']: t for t in data_array}
tools_dict = {t['tool']: t['documentation'] for t in data_array}
# COMMAND ----------
agent_dict = {
"name":"",
"description": "",
"provider":"", #openai, azure, databricks
"model":"",
"instruction": "",
"tools":[],
"pip_requirements":[]
}
def set_values():
return agent_dict['name'], agent_dict['description'], agent_dict['provider'], agent_dict['model'], agent_dict['instruction']
def yaml_update(yaml_text):
global agent_dict
print(f"YAML: {yaml_text}")
agent_dict = yaml.safe_load(yaml_text)
print(agent_dict)
return set_values()
def update_field(field_name):
def set_field(input):
global agent_dict
agent_dict[field_name] = input
return yaml_string()
return set_field
# COMMAND ----------
import yaml
def yaml_string():
return yaml.dump(agent_dict, sort_keys=False, indent=4, width=2147483647)
def set_tool_desc(tool):
if tool == '':
return gr.Markdown.update('')
else:
return gr.Markdown.update(tools_dict[tool])
def parse_param(param):
return {
"index":int(param['ordinal_position']) - 1,
"name":param['parameter_name'],
"value":param['default_value'],
"type":param['parameter_type'],
"kind":param['parameter_kind'],
}
def add_agent_tool(selected_tool, yaml_text):
if (selected_tool == ''):
gr.Error('No Tool Selected!')
return yaml_text
else:
new_tool = tools_ref[selected_tool]
new_tool_params = new_tool['parameters']
agent_dict['tools'].append({
"tool": new_tool['tool'],
"description": new_tool['documentation'],
"parameters":{p["name"]: p["default"] for p in new_tool_params}
})
agent_dict["pip_requirements"] = list(set(agent_dict["pip_requirements"] + new_tool["pip_requirements"]))
return yaml_string()
#agent_tools = [{"index"=0, "name"="tool_name", "parameters"=[]}]
# COMMAND ----------
tools_ref
# COMMAND ----------
import gradio as gr
with gr.Blocks(theme=gr.themes.Base()) as agent_studio:
with gr.Group():
with gr.Row():
name = gr.Textbox(agent_dict['name'], label='Name')
with gr.Row():
provider = gr.Dropdown(label='Provider', choices=['openai', 'databricks'], interactive=True)
model = gr.Textbox(label='Model')
with gr.Row():
description = gr.Textbox(label='Description', lines=5)
with gr.Row():
instruction = gr.Textbox(label='Instruction', lines=5)
with gr.Group():
with gr.Row():
tool_list = gr.Dropdown(show_label=False, choices=tools_dict.keys(), scale=2)
addtool_button = gr.Button('Add', size='sm', scale=0)
with gr.Row():
tool_desc = gr.Markdown("Select a tool to see it's description.")
tool_list.change(fn=set_tool_desc,
inputs=[tool_list],
outputs=[tool_desc])
with gr.Group():
with gr.Row():
agent_yaml = gr.Textbox(yaml_string, label='Agent yaml', lines=10)
with gr.Group():
with gr.Row():
register = gr.Button('Log, Register & Deploy')
name.blur(fn=update_field("name"), inputs=[name], outputs=[agent_yaml])
provider.change(fn=update_field("provider"), inputs=[provider], outputs=[agent_yaml])
model.blur(fn=update_field("model"), inputs=[model], outputs=[agent_yaml])
description.blur(fn=update_field("description"), inputs=[description], outputs=[agent_yaml])
instruction.blur(fn=update_field("instruction"), inputs=[instruction], outputs=[agent_yaml])
addtool_button.click(fn=add_agent_tool, inputs=[tool_list, agent_yaml], outputs=[agent_yaml])
agent_yaml.input(fn=yaml_update, inputs=[agent_yaml], outputs=[name, description, provider, model, instruction])
register.click(fn=create_agent, inputs=[agent_yaml])
# COMMAND ----------
app_port = 8765
# COMMAND ----------
print(spark.conf.get("spark.databricks.clusterUsageTags.clusterOwnerOrgId"))
# COMMAND ----------
cluster_id = dbutils.notebook.entry_point.getDbutils().notebook().getContext().clusterId().getOrElse(None)
workspace_id = spark.conf.get("spark.databricks.clusterUsageTags.clusterOwnerOrgId")
print(f"Use this URL to access the chatbot app: ")
print(f"https://dbc-dp-{workspace_id}.cloud.databricks.com/driver-proxy/o/{workspace_id}/{cluster_id}/{app_port}/gradio/")
# COMMAND ----------
dbx_app = DatabricksApp(app_port)
# demo.queue()
dbx_app.mount_gradio_app(agent_studio)
import nest_asyncio
nest_asyncio.apply()
dbx_app.run()