-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
172 lines (139 loc) · 7.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- coding: utf-8 -*-
"""
------------------------------------------------------------------------------
Copyright (C) 2020-2022 University of Zurich
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------------------------------------------------------------------------
"train.py" - Initializing the network and proceeding to training and test epochs.
Project: PyTorch e-prop
Author: C. Frenkel, Institute of Neuroinformatics, University of Zurich and ETH Zurich
Cite this code: BibTeX/APA citation formats auto-converted from the CITATION.cff file in the repository are available
through the "Cite this repository" link in the root GitHub repo https://github.com/ChFrenkel/eprop-PyTorch/
------------------------------------------------------------------------------
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import models
from utilis import *
from args import args as my_args
def train(args, device, train_loader, traintest_loader, test_loader):
torch.manual_seed(42)
accuracy_epoch, loss_epoch = [], []
for trial in range(1,args.trials+1):
# Network topology
model = models.SRNN(n_in=args.n_inputs,
n_rec=args.n_rec,
n_out=args.n_classes,
n_t=args.n_steps,
thr=args.threshold,
tau_m=args.tau_mem,
tau_o=args.tau_out,
b_o=args.bias_out,
gamma=args.gamma,
dt=args.dt,
model=args.model,
classif=args.classif,
w_init_gain=args.w_init_gain,
lr_layer=args.lr_layer_norm,
t_crop=args.delay_targets,
visualize=args.visualize,
visualize_light=args.visualize_light,
device=device)
# Use CUDA for GPU-based computation if enabled
if args.cuda:
model.cuda()
# Initial monitoring
if (args.trials > 1):
print('\nIn trial {} of {}'.format(trial,args.trials))
if (trial == 1):
print("=== Model ===" )
print(model)
# Optimizer
if args.optimizer == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=args.lr)
elif args.optimizer == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr)
elif args.optimizer == 'NAG':
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True)
elif args.optimizer == 'RMSprop':
optimizer = optim.RMSprop(model.parameters(), lr=args.lr)
else:
raise NameError("=== ERROR: optimizer " + str(args.optimizer) + " not supported")
# Loss function (only for performance monitoring purposes, does not influence learning as e-prop learning is hardcoded)
if args.loss == 'MSE':
loss = (F.mse_loss, (lambda l : l))
elif args.loss == 'BCE':
loss = (F.binary_cross_entropy, (lambda l : l))
elif args.loss == 'CE':
loss = (F.cross_entropy, (lambda l : torch.max(l, 1)[1]))
else:
raise NameError("=== ERROR: loss " + str(args.loss) + " not supported")
# Training and performance monitoring
print("\n=== Starting model training with %d epochs:\n" % (args.epochs,))
for epoch in range(1, args.epochs + 1):
print("\t Epoch "+str(epoch)+"...")
#Training:
do_epoch(args, True, model, device, train_loader, optimizer, loss, 'train') # Will display the average accuracy on the training set during the epoch (changing weights)
#Check performance on the training set and on the test set:
if not args.skip_test:
#do_epoch(args, False, model, device, traintest_loader, optimizer, loss, 'train') # Uncomment to display the final accuracy on the training set after the epoch (fixed weights)
accuracy_ep, loss_ep=do_epoch(args, False, model, device, test_loader, optimizer, loss, 'test')
accuracy_epoch.append(accuracy_ep)
loss_epoch.append(loss_ep)
return accuracy_epoch, loss_epoch
def do_epoch(args, do_training, model, device, loader, optimizer, loss_fct, benchType):
accuracy_ep=[] #List to store the accuracy per epoch
loss_ep=[]
model.eval() # This implementation does not rely on autograd, learning update rules are hardcoded
score = 0
loss = 0
batch = args.batch_size if (benchType == 'train') else args.test_batch_size
length = args.full_train_len if (benchType == 'train') else args.full_test_len
with torch.no_grad(): # Same here, we make sure autograd is disabled
# For each batch
for batch_idx, (data, label) in enumerate(loader):
data, label = data.to(device), label.to(device)
if args.classif: # Do a one-hot encoding for classification
targets = torch.zeros(label.shape, device=device).unsqueeze(-1).expand(-1,-1,args.n_classes).scatter(2, label.unsqueeze(-1), 1.0).permute(1,0,2)
else:
targets = label.permute(1,0,2)
# Evaluate the model for all the time steps of the input data, then either do the weight updates on a per-timestep basis, or on a per-sample basis (sum of all per-timestep updates).
optimizer.zero_grad()
output = model(data.permute(1,0,2), targets, do_training)
if do_training:
optimizer.step()
# Compute the loss function, inference and score
if args.delay_targets:
loss += loss_fct[0](output[-args.delay_targets:], loss_fct[1](targets[-args.delay_targets:]), reduction='mean')
else:
loss += loss_fct[0](output, loss_fct[1](targets), reduction='mean')
if args.classif:
if args.delay_targets:
inference = torch.argmax(torch.sum(output[-args.delay_targets:],axis=0),axis=1)
score += torch.sum(torch.eq(inference,label[:,0]))
else:
inference = torch.argmax(torch.sum(output,axis=0),axis=1)
score += torch.sum(torch.eq(inference,label[:,0]))
if benchType == "train" and do_training:
info = "on training set (while training): "
elif benchType == "train":
info = "on training set : "
elif benchType == "test":
info = "on test set : "
if args.classif:
print("\t\t Score "+info+str(score.item())+'/'+str(length)+' ('+str(score.item()/length*100)+'%), loss: '+str(loss.item()))
accuracy_ep.append(score.item()/length*100)
loss_ep.append(loss.item())
else:
print("\t\t Loss "+info+str(loss.item()))
return accuracy_ep, loss_ep