-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.py
67 lines (55 loc) · 2.25 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import pandas as pd
import time
# Function to fetch trending topics from a website (e.g., Google Trends or another website)
def fetch_trending_topics(url):
try:
# Fetch the webpage
response = requests.get(url)
response.raise_for_status() # Check if request was successful
soup = BeautifulSoup(response.text, 'html.parser')
# Scrape relevant data (this would depend on the site's structure)
# For demo purposes, let's assume we're grabbing topics from h2 tags
topics = []
for h2_tag in soup.find_all('h2'):
topic = h2_tag.get_text()
topics.append(topic)
return topics
except Exception as e:
print(f"Error fetching topics: {e}")
return []
# Function to analyze and plot keyword search patterns over time
def track_keyword_trend(keyword, timeframe="2023-01-01:2023-12-31"):
# Placeholder function to simulate search trend analysis
# In a real-world scenario, you can use the Google Trends API or another data source
# Here, we generate some dummy data to visualize
# Generate dates and random popularity scores for demonstration
dates = pd.date_range(start="2023-01-01", periods=365, freq='D')
popularity = pd.Series([50 + 20 * abs(time.time() % 5) for _ in range(365)], index=dates)
# Plot the trend
plt.figure(figsize=(10, 6))
plt.plot(popularity.index, popularity.values, label=keyword)
plt.title(f"Search Trend for '{keyword}' over Time")
plt.xlabel("Date")
plt.ylabel("Search Popularity")
plt.legend()
plt.grid(True)
plt.show()
# Main function to run the script
def main():
# Example of fetching topics from a demo URL
url = "https://example.com/trending-topics" # Replace with actual URL
trending_topics = fetch_trending_topics(url)
if trending_topics:
print("Trending Topics:")
for idx, topic in enumerate(trending_topics):
print(f"{idx+1}. {topic}")
# Let's track the trend of the first topic (as a demo)
first_topic = trending_topics[0]
track_keyword_trend(first_topic)
else:
print("No trending topics found.")
if __name__ == "__main__":
main()