-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtextClassifierRNN
176 lines (139 loc) · 5.68 KB
/
textClassifierRNN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import pandas as pd
import cPickle
from collections import defaultdict
import re
from bs4 import BeautifulSoup
import sys
import os
os.environ['KERAS_BACKEND']='theano'
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.layers import Embedding
from keras.layers import Dense, Input, Flatten
from keras.layers import Conv1D, MaxPooling1D, Embedding, Merge, Dropout, LSTM, GRU, Bidirectional
from keras.models import Model
from keras import backend as K
from keras.engine.topology import Layer, InputSpec
from keras import initializations
MAX_SEQUENCE_LENGTH = 1000
MAX_NB_WORDS = 20000
EMBEDDING_DIM = 100
VALIDATION_SPLIT = 0.2
def clean_str(string):
"""
Tokenization/string cleaning for dataset
Every dataset is lower cased except
"""
string = re.sub(r"\\", "", string)
string = re.sub(r"\'", "", string)
string = re.sub(r"\"", "", string)
return string.strip().lower()
data_train = pd.read_csv('~/Testground/data/imdb/labeledTrainData.tsv', sep='\t')
print data_train.shape
texts = []
labels = []
for idx in range(data_train.review.shape[0]):
text = BeautifulSoup(data_train.review[idx])
texts.append(clean_str(text.get_text().encode('ascii','ignore')))
labels.append(data_train.sentiment[idx])
tokenizer = Tokenizer(nb_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))
data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
labels = to_categorical(np.asarray(labels))
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
nb_validation_samples = int(VALIDATION_SPLIT * data.shape[0])
x_train = data[:-nb_validation_samples]
y_train = labels[:-nb_validation_samples]
x_val = data[-nb_validation_samples:]
y_val = labels[-nb_validation_samples:]
print('Traing and validation set number of positive and negative reviews')
print y_train.sum(axis=0)
print y_val.sum(axis=0)
GLOVE_DIR = "/ext/home/analyst/Testground/data/glove"
embeddings_index = {}
f = open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt'))
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
print('Total %s word vectors.' % len(embeddings_index))
embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
embedding_layer = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=True)
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
l_lstm = Bidirectional(LSTM(100))(embedded_sequences)
preds = Dense(2, activation='softmax')(l_lstm)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])
print("model fitting - Bidirectional LSTM")
model.summary()
model.fit(x_train, y_train, validation_data=(x_val, y_val),
nb_epoch=10, batch_size=50)
# Attention GRU network
class AttLayer(Layer):
def __init__(self, **kwargs):
self.init = initializations.get('normal')
#self.input_spec = [InputSpec(ndim=3)]
super(AttLayer, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape)==3
#self.W = self.init((input_shape[-1],1))
self.W = self.init((input_shape[-1],))
#self.input_spec = [InputSpec(shape=input_shape)]
self.trainable_weights = [self.W]
super(AttLayer, self).build(input_shape) # be sure you call this somewhere!
def call(self, x, mask=None):
eij = K.tanh(K.dot(x, self.W))
ai = K.exp(eij)
weights = ai/K.sum(ai, axis=1).dimshuffle(0,'x')
weighted_input = x*weights.dimshuffle(0,1,'x')
return weighted_input.sum(axis=1)
def get_output_shape_for(self, input_shape):
return (input_shape[0], input_shape[-1])
embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
embedding_layer = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=True)
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
l_gru = Bidirectional(GRU(100, return_sequences=True))(embedded_sequences)
l_att = AttLayer()(l_gru)
preds = Dense(2, activation='softmax')(l_att)
model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['acc'])
print("model fitting - attention GRU network")
model.summary()
model.fit(x_train, y_train, validation_data=(x_val, y_val),
nb_epoch=10, batch_size=50)