This repository has been archived by the owner on May 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwk6.tex
549 lines (387 loc) · 23.3 KB
/
wk6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
%
% This is a borrowed LaTeX template file for lecture notes for CS267,
% Applications of Parallel Computing, UCBerkeley EECS Department.
% Now being used for CMU's 10725 Fall 2012 Optimization course
% taught by Geoff Gordon and Ryan Tibshirani. When preparing
% LaTeX notes for this class, please use this template.
%
% To familiarize yourself with this template, the body contains
% some examples of its use. Look them over. Then you can
% run LaTeX on this file. After you have LaTeXed this file then
% you can look over the result either by printing it out with
% dvips or using xdvi. "pdflatex template.tex" should also work.
%
\documentclass[twoside]{article}
\setlength{\oddsidemargin}{0.25 in}
\setlength{\evensidemargin}{-0.25 in}
\setlength{\topmargin}{-0.6 in}
\setlength{\textwidth}{6.5 in}
\setlength{\textheight}{8.5 in}
\setlength{\headsep}{0.75 in}
\setlength{\parindent}{0 in}
\setlength{\parskip}{0.1 in}
%
% ADD PACKAGES here:
%
\usepackage{amsmath,amsfonts,graphicx,soul}
%
% The following commands set up the lecnum (lecture number)
% counter and make various numbering schemes work relative
% to the lecture number.
%
\newcounter{lecnum}
\renewcommand{\thepage}{\thelecnum-\arabic{page}}
\renewcommand{\thesection}{\thelecnum.\arabic{section}}
\renewcommand{\theequation}{\thelecnum.\arabic{equation}}
\renewcommand{\thefigure}{\thelecnum.\arabic{figure}}
\renewcommand{\thetable}{\thelecnum.\arabic{table}}
\newcommand*\conj[1]{\bar{#1}}
\newcommand*\mean[1]{\bar{#1}}
\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
%
% The following macro is used to generate the header.
%
\newcommand{\lecture}[4]{
\pagestyle{myheadings}
\thispagestyle{plain}
\newpage
\setcounter{lecnum}{#1}
\setcounter{page}{1}
\noindent
\begin{center}
\framebox{
\vbox{\vspace{2mm}
\hbox to 6.28in { {\bf STAT7017 Big Data Statistics
\hfill Semester 2 2018} }
\vspace{4mm}
\hbox to 6.28in { {\Large \hfill Lecture #1: #2 \hfill} }
\vspace{2mm}
\hbox to 6.28in { {\it Lecturer: #3 \hfill Scribes: #4} }
\vspace{2mm}}
}
\end{center}
\markboth{Lecture #1: #2}{Lecture #1: #2}
{\bf Note}: {\it LaTeX template courtesy of UC Berkeley EECS dept.}
{\bf Disclaimer}: {\it These notes have not been subjected to the
usual scrutiny reserved for formal publications. They may be distributed
outside this class only with the permission of the Instructor.}
\vspace*{4mm}
}
%
% Convention for citations is authors' initials followed by the year.
% For example, to cite a paper by Leighton and Maggs you would type
% \cite{LM89}, and to cite a paper by Strassen you would type \cite{S69}.
% (To avoid bibliography problems, for now we redefine the \cite command.)
% Also commands that create a suitable format for the reference list.
\renewcommand{\cite}[1]{[#1]}
\def\beginrefs{\begin{list}%
{[\arabic{equation}]}{\usecounter{equation}
\setlength{\leftmargin}{2.0truecm}\setlength{\labelsep}{0.4truecm}%
\setlength{\labelwidth}{1.6truecm}}}
\def\endrefs{\end{list}}
\def\bibentry#1{\item[\hbox{[#1]}]}
%Use this command for a figure; it puts a figure in wherever you want it.
%usage: \fig{NUMBER}{SPACE-IN-INCHES}{CAPTION}
\newcommand{\fig}[3]{
\vspace{#2}
\begin{center}
Figure \thelecnum.#1:~#3
\end{center}
}
% Use these for theorems, lemmas, proofs, etc.
\newtheorem{theorem}{Theorem}[lecnum]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}[theorem]{Definition}
\newenvironment{proof}{{\bf Proof:}}{\hfill\rule{2mm}{2mm}}
% **** IF YOU WANT TO DEFINE ADDITIONAL MACROS FOR YOURSELF, PUT THEM HERE:
\newcommand\E{\mathbb{E}}
\begin{document}
%FILL IN THE RIGHT INFO.
%\lecture{**LECTURE-NUMBER**}{**DATE**}{**LECTURER**}{**SCRIBE**}
\lecture{6}{27 August}{Dr Dale Roberts}{Rui Qiu}
%\footnotetext{These notes are partially based on those of Nigel Mansell.}
% **** YOUR NOTES GO HERE:
% Some general latex examples and examples making use of the
% macros follow.
%**** IN GENERAL, BE BRIEF. LONG SCRIBE NOTES, NO MATTER HOW WELL WRITTEN,
%**** ARE NEVER READ BY ANYBODY.
\textbf{\underline{Central Limit Theorem}}
Recall that Central limit theorems (CLTs) describe how the sum of random variables fluctuates around some quantity (e.g. the mean).
The \underline{classic} CLT case is to consider a sequence $X_1,X_2,\dots$ of I.I.D. random variables with $\mathbb{E}[X_i]=\mu$ and $Var[X_i]=\sigma^2<\infty$, then the (Lindeberg-Levy) CLT says if $S_n:=\sum^n_{k=1}X_k$ then
$$\sqrt{n}(S_n-\mu)\overset{d}\rightarrow N(0,\sigma^2).$$
This lecture we will look at some equivalent statements in our random matrix setting. In particular of linear spectral statistics of the form
$$T_n=\frac{1}{p}\sum^p_{k=1}\phi(\lambda_k)=\int\phi(x)dF^{\mathbf{A}_n}(x):=F^{\mathbf{A}_n}(\phi).$$
of some sample matrix $\mathbf{A}_n$, e.g.
$$\mathbf{A}_n=\begin{cases}
\mathbf{S}_n,\text{ sample covariance matrix}.\\
\mathbf{F}_n,\text{ Fisher matrix}.
\end{cases}$$
Some examples that we will see later in the course are:
\underline{Example 1:} The \underline{generalized variance} is
$$T_n=\frac{1}{p}\log\lvert S_n\rvert =\frac{1}{p}\sum^p_{k=1}\log(\lambda_k).$$
$$\phi(x)=\log(x)$$
\underline{Example 2}: Later in the course, we shall look at testing equality of sample covariance matrices. To test the hypothesis $H_0:\sum=\mathbf{I}_p$, we shall look at the log-likelihood ratio statistic
$$LRT_1=tr\mathbf{S}_n-\log\lvert\mathbf{S}_n\rvert - p =\sum^p_{k=1}(\lambda_k-\log(\lambda_k)-1).$$
i.e. $\phi(x)=x-\log(x)-1$.
\underline{Example 3:} We shall also look at the two-sample test of the hypothesis $H_0:\sum_1=\sum_2$ that two populations have a common covariance matrix
$$LRT_2=-\log\lvert\mathbf{I}_p+\alpha_n\mathbf{F}_n\rvert = -\sum^p_{k=1}(1+\alpha_n\log(\lambda_k))$$
where $\alpha_n$ is same constant.
$$\phi(x)=-\log(1-\alpha_n x).$$\\
\underline{\textbf{CLT for Linear Spectral Statistics of $\mathbf{S}_n$}}
We shall consider simple case
$$\mathbf{S}_n=\frac{1}{n}\sum^n_{i=1}\mathbf{x}_i\mathbf{x}_i^*$$
where these are ``independent vectors without cross-correlation".
In other words, the data matrix $\mathbf{X}=(\mathbf{x}_1,\mathbf{x}_2,\dots, \mathbf{x}_n)=(x_{ij})$ of size $p\times n$ has IID entries with $\mathbb{E}[x_{ij}]=0,\mathbb{E}\lvert x_{ij}\rvert^2=1.$
$$\mathbf{S}_n=\frac{1}{n}\mathbf{X}\mathbf{X}^*.$$
The LSD of $\mathbf{S}_n$ is the Marchenko-Pastur law $F_y$ where $y=\lim\frac{p}{n}$: This means, $F^{\mathbf{S}_n}(\phi)\to F_y(\phi)$ for any continuous function $\phi$.
Making an analogy to the class CLT, we would like to understand how $F^{\mathbf{S}_n}(\phi)$ fluctuates around $F_y(\phi)$ as $n\to\infty (p\to \infty)$.
From RMT, we know that $F^{\mathbf{S}_n}(\phi)$ fluctuates around its mean in such a way that $P[F^{\mathbf{S}_n}(\phi)-\mathbb{E}(F^{\mathbf{S}_n}(\phi))]\sim$ Normal.
We can decompose
$$P[F^{\mathbf{S}_n}(\phi)-F_y(\phi)]=P[F^{\mathbf{S}_n}(\phi)-\mathbb{E}F^{\mathbf{S}_n}(\phi)]+P[\mathbb{E}[F^{\mathbf{S}_n}(\phi)]-F_y(\phi)]=\text{Normal + Bias}$$
The ``bias" term is often a function of $y_n-y=\frac{p}{n}-y.$
$y_n$ is called the dimension-to-sample ratio and the difference to $y$ can be of any order. For example, if
$$y_n-y\approx p^{-\alpha}, \alpha>0$$
then the bias term behaves like $p^{-1-\alpha}$ and the value depends on $\alpha$. If $\alpha$ small then $p^{1-\alpha}$ can blow-up and if $\alpha$ large then $p^{1-\alpha}$ converges to zero or constant, as $p\to\infty$.
We need more restrictions on $y_n-y$.
We also need to accurately estimate $\mathbb{E}F^{\mathbf{S}_n}(\phi)$. One way is to estimate $\mathbb{E}F^{\mathbf{S}_n}(\phi)\approx F_{y_n}(\phi)$. ``finite horizon proxy".
We saw last week that the ST $\underline{S}$ of $\underline{F}_y:=(1-y)\delta_0+yF_y$ satisfies the equation that we found for the Generalized MP ($H=\delta_1$):
$$Z=-\frac{1}{\underline{S}}+\frac{y}{1+\underline{S}}, Z\in\mathbb{C}.$$
Let $\beta=\mathbb{E}\lvert x_{ij}\rvert^4-1-k, h =\sqrt{y}.$ (????)
Set $k=2$ if entries of $\mathbf{X}$ are real and $k=1$ if complex values.
If entries are Gaussian, $\beta=0$.
The following theorem quantifies the fluctuations of
$$P(F^{\mathbf{S}_n}(\phi)-F_{y_n}(\phi)).$$
\begin{theorem}
[Bai \& Silverstein; 2004] Assume $p\times n$ data matrix $\mathbf{X}=(\mathbf{x}_1,\mathbf{x}_2,\dots,\mathbf{x}_n)$ has IID entires $\mathbb{E}x_{ij}=0, \mathbb{E}\lvert x_{ij}\rvert ^2=1, \mathbb{E}\lvert x_{ij}\rvert ^4 =\beta+1+k<\infty.$
Also, $p\to\infty,n\to\infty,p/n\to y>0.$
Let $f_1,f_2,\dots, f_k$ be analytic functions on an open region containing support of $F_y$.
The random vector $(X_n(f_1),X_n(f_2),\dots, X_n(f_k))$ where
$$X_n(f):=P(F^{\mathbf{S}_n}(f)-\mathbf{F}_{y_n}(f))$$
converges weakly to a Gaussian vector
$$(X_{f_1},\dots, X_{f_k})$$
with mean $$\mathbb{E}X_f=(k-1)I_1(f)-\beta I_2(f)$$
and
$$Cov(X_{f}, X_g)=kJ_1(f,g)+\beta J_2(f,g).$$
where
$$I_1(f)=-\frac{1}{2\pi i}\oint\frac{y(\underline{S}/(1+\underline{S})^3(z)f(z)}{[\mathbf{1}-y(\underline{S}/(1+\underline{S}))^2]^2}dz.$$
$$I_2(f)=-\frac{1}{2\pi i}\oint \frac{y(\underline{S}/(1+\underline{S}))^3(z)f(z)}{\mathbf{1}-y(\underline{S}/(1+\underline{S}))}dz.$$
and
$$J_1(f,g)=-\frac{1}{4\pi^2}\oint\oint\frac{f(z_1)f(z_2)}{(\underline{S}(z_1)-\underline{S}(z_2))^2}\underline{S}'(z_1)\underline{S}'(z_2)dz_1dz_2.$$
$$J_2(f,g)=-\frac{y}{4\pi^2}\oint f(z_1)\frac{\partial}{\partial z_1}\left(\frac{\underline{S}}{1+\underline{S}}(z_1)\right)dz_1\times \oint g(z_2)\frac{\partial}{\partial z_2}\left(\frac{\underline{S}}{1+\underline{S}}(z_2)\right)dz_2$$
where the integrals are over contours enclosing the support of $F_y$.
\end{theorem}
\underline{Remarks:} \begin{itemize}
\item The asymptotic mean $\mathbb{E}[X_f]$ is non-null and depends on fourth moment.
\item This theorem is difficult to use in practice because the limiting parameters are integrals on contours that are not given explicitly.
\item This theorem, from 2004, was a big breakthrough as it gave explicit formulas for the limiting mean and covariance.
\end{itemize}
A more explicit version of this theorem can be obtained:
\begin{proposition}
We have
$$I_1(f)=\lim_{r \downarrow 1}I_1(f,r)$$
$$I_2(f)=\frac{1}{2\pi i}\oint_{\lvert\xi\rvert =1}f(\lvert1+h\xi\rvert^2)\frac{1}{\xi^3}d\xi$$
$$J_1(f,g)=\lim_{r\downarrow 1}J_1(f,g,r)$$
$$J_2(f,g)=-\frac{1}{4\pi^2}\oint_{\lvert\xi_1\rvert =1}\frac{f(\lvert 1+h\xi_1\rvert^2)}{\xi_1^2}d\xi_1\oint_{\lvert\xi_2\rvert =1}\frac{g(\lvert 1+h\xi_2\rvert ^2)}{\xi_2^2}d\xi_2$$
with
$$I_1(f,r)=\frac{1}{2\pi i}\oint_{\lvert \xi\rvert=1}f(\lvert 1+ h\xi\rvert^2)\left[\frac{\xi}{\xi^2-r^{-2}}-\frac{1}{\xi}\right]d\xi$$
$$I_2(f,g,r)=-\frac{1}{4\pi^2}\oint_{\lvert \xi_1\rvert =1}\oint_{\lvert \xi_2\rvert =1}\frac{f(\lvert 1+h\xi_1\rvert ^2)g(\lvert 1+h\xi_2\rvert ^2)}{(\xi_1-r\xi_2)^2}d\xi_1d\xi_2$$
\end{proposition}
\begin{proof}
We are just going to look at the simplest case of $I_2(f)$.
The idea is to perform change of variable $z=1+hr\xi _ hr^{-1}\bar{\xi}+h^2$ with $r>1$ but close to $1$, and $\lvert \xi\rvert = 1, h=\sqrt{y}.$
As $\xi$ runs anticlockwise, $z$ runs on contour $c$ encloses support $[a,b]=[(1\pm h)^2]$.
Since $z=-\frac{1}{\underline{S}}+\frac{y}{1+\underline{S}}, z\in\mathbb{C}^+$. We have $\underline{S}=-\frac{1}{1+hr\xi}$ and $dz=h(r-r^{-1}\xi^{-2})d\xi$.
Applying this to $I_2(f)$ in theorem:
$$I_2(f)=\lim_{r\downarrow 1}\frac{1}{2\pi i}\oint_{\lvert\xi\rvert =1}f(z)\frac{1}{\xi^3}\frac{r\xi^2-r^{-1}}{r(r^2\xi^2-1)}d\xi=\frac{1}{2\pi i}\oint_{\lvert \xi\rvert =1}f(\lvert 1+h\xi\rvert ^2)\frac{1}{\xi^3}d\xi.$$
as
\begin{equation}
\begin{split}
\lvert 1+h\xi\rvert^2&=(1+h\xi)\overline{(1+h\xi)}\\
&=(1+h\xi)(1+h\bar{\xi})\\
&=1+h\xi+h\bar{\xi}+h^2\lvert\xi\rvert\\
&=1+h\xi+h\bar{\xi}+h^2.
\end{split}
\end{equation}
\end{proof}
\textbf{\underline{An example application of CLT}}
\begin{proposition}
Consider two linear spectral statistics
$$\sum^p_{i=1}\log(\lambda_i), \sum^p_{i=1}\lambda_i$$
where $(\lambda_i)$ are eigenvalues of sample covariance $\mathbf{S}_n$. Then, under assumptions of Theorem, the vector
$$\begin{pmatrix}
\sum^p_{i=1}\log(\lambda_i)-pF_{y_n}(\log x)\\
\sum^p_{i=1}\lambda_i-pF_{y_n}(x)
\end{pmatrix}\overset{d}\to N(\mu_1, \mathbf{Q}_1)$$
$$\mu_1=\begin{pmatrix}
\frac{k-1}{2}\log(1-y)-\frac{1}{2}\beta y\\
0
\end{pmatrix}$$
$$\mathbf{Q}_1=\begin{pmatrix}
-k\log(1-y)+\beta y & (\beta + k)y\\
(\beta+k)y & (\beta+k)y\\
\end{pmatrix}$$
$$F_{y_n}(x)=1, F_{y_n}(\log x)=\frac{y_n-1}{y_n}\log(1)-y_n-1.$$
\end{proposition}
\begin{proof}
In the Theorem, take $k=2$ with
$$f(x)=\log(x), g(x)=x, x>0.$$
and we are going to consider the vector $(X_f,X_g)$.
$$\mathbb{E}[X_f]=(k-1)I_1(f)+\beta I_2(f),\mathbb{E}[X_g]=(k-1)I_1(g)+\beta I_2(g)$$ etc. We shall use the proposition to calculate
\begin{equation}
\begin{split}
I_1(f,r)&=\frac{1}{2\pi i}\oint_{\lvert \xi\rvert =1}f(\lvert 1+h\xi\rvert ^2)\left[\frac{\xi}{\xi^2-r^{-2}}-\frac1{\xi}\right]d\xi\\
&=\frac{1}{2\pi i}\oint_{\lvert \xi\rvert =1}\log(\lvert 1+h\xi\rvert ^2)\left[\frac{\xi}{\xi^2-r^{-2}}-\frac1{\xi}\right]d\xi\\
\end{split}
\end{equation}
Recall
$$\lvert 1+h\xi\rvert ^2=(1+h\xi)(1+h\bar{\xi})=(1+h\xi)(1+h\frac1{\xi})$$
$$\lvert \xi\rvert = 1\implies \bar{\xi}=e^{-i\theta}=\frac{1}{\xi}.$$
continued (6.2)
\begin{equation}
\begin{split}
&=\frac{1}{2\pi i}\oint_{\lvert \xi\rvert =1}\left[\log(1+h\xi)+\log(1+h/\xi)\right]\left[\frac{\xi}{\xi^2-r^{-2}}-\frac{1}{\xi}\right]d\xi\\
&=\frac{1}{2\pi i}\left[\oint_{\lvert\xi\rvert =1}\log(1+h\xi)\frac{\xi}{\xi^2-r^{-2}}d\xi-\oint_{\lvert \xi\rvert =1}\log(1+h\xi)\frac1\xi d\xi+\oint_{\lvert\xi\rvert =1}\log(1+h\xi^{-1})\frac{\xi}{\xi^2-r^{-2}}d\xi - \oint_{\lvert\xi\rvert=1}\log(1+h\xi^{-1})\frac1\xi d\xi \right]
\end{split}
\end{equation}
For the first integral, the poles are $\pm\frac{1}{r}$.
\begin{equation}
\begin{split}
\frac{1}{2\pi i }\oint_{\lvert\xi\rvert =1}\log(1+h\xi)\frac{\xi}{\xi^2-r^{-2}}d\xi&=\frac{\log(1+h\xi)\xi}{\xi-r^{-1}}\Bigg\lvert_{\xi=-r^{-1}}+\frac{\log(1+h\xi)\xi}{\xi+r^{-1}}\Bigg\lvert_{\xi=r^{-1}}\\
&=\frac{1}{2}\log\left(1-\frac{h^2}{r^2}\right).
\end{split}
\end{equation}
For the second integral, singularity at $\xi=0$.
$$\frac{1}{2\pi i}\oint_{\lvert\xi\rvert =1}\log(1+h\xi)\frac{1}{\xi}d\xi=\log(1+h\xi)\Bigg\lvert_{\xi=0}=0.$$
For third integral, we perform a change of variable $z=\frac{1}{\xi}$, so $d\xi=-z^{-2}dz$.
\begin{equation}
\begin{split}
\frac{1}{2\pi i}\oint_{\lvert\xi\rvert =1}\log(1+h\xi^{-1})\frac{\xi}{\xi^2-r^{-2}}d\xi&=-\frac{1}{2\pi i}\oint_{\lvert z\rvert =1}\log(1+hz)\frac{z^{-1}}{z^{-2}-r^{-2}}\frac{-1}{z^{2}}dz\\
&=\frac{1}{2\pi i }\oint_{\lvert z\rvert =1}\frac{\log(1+hz)r^2}{z(z+r)(z-r)}dz\\
&=\frac{\log(1+hz)r^2}{(z+r)(z-r)}\Bigg\lvert_{z=0}\\
&=0
\end{split}
\end{equation}
Fourth integral: $z=\xi^{-1}, d\xi =-z^{-2}dz.$
\begin{equation}
\begin{split}
\frac{1}{2\pi i}\oint_{\lvert\xi\rvert=1}\log(1+h\xi^{-1})\frac{1}{\xi}d\xi&=-\frac{1}{2\pi i}\oint_{\lvert z\rvert =1}\log(1+hz)\frac{-z}{z^2}dz\\
&=\log(1+hz)\Bigg\lvert_{z=0}=0
\end{split}
\end{equation}
Collecting all terms gives $I_1(f,r)=\frac{1}{2}\log(1-h^2/r^2)$.
$$I_1(g,r)=\frac{1}{2\pi i}\oint_{\lvert\xi\rvert=1}g(1\lvert 1+h\xi\rvert ^2)\cdot\left[\frac{\xi}{\xi^2-r^{-2}}-\frac1\xi\right]d\xi
=\frac{1}{2\pi i}\oint_{\lvert\xi\rvert =1}\lvert 1+h\xi\rvert ^2\left[\frac{\xi}{\xi^2-r^{-2}}-\frac1\xi\right]d\xi$$
and
$$\lvert 1+h\xi\rvert ^2=(1+h\xi)(1+h\bar{\xi})=1+h\xi^{-1}+h\xi+h^2=\frac{\xi+h+h\xi^2+h^2\xi}{\xi}$$
so (continued)
$$=\frac{1}{2\pi i}\oint_{\lvert\xi\rvert =1}\frac{\xi+h+h\xi^2+h^2\xi}{\xi}\times \frac{\xi}{\xi^2-r^{-2}}d\xi-\frac{1}{2\pi i}\oint_{\lvert\xi\rvert =1}\frac{\xi+h+h\xi^2+h^2\xi}{\xi}\frac{1}{\xi}d\xi.$$
The first integral
\begin{equation}
\begin{split}
\frac{1}{2\pi i }\oint_{\lvert\xi\rvert = 1}\frac{\xi+h+h\xi^2+h^2\xi}{(\xi-r)(\xi+r)}d\xi&=\frac{\xi+h+h\xi^2+h^2\xi}{\xi-r}\Bigg\lvert_{\xi=-r^{-1}}+\frac{\xi+h+h\xi^2+h^2\xi}{\xi+r}\Bigg\lvert_{\xi=r^{-1}}\\
&=1+h^2
\end{split}
\end{equation}
and second integral (2nd order pole at $\xi=0$.)
\begin{equation}
\begin{split}
\frac{1}{2\pi i}\oint_{\lvert\xi\rvert=1}\frac{\xi+h+h\xi^2+h^2\xi}{\xi^2}d\xi&=\frac{\partial}{\partial \xi}(\xi+h+h\xi^2+h\xi)\Bigg\lvert_{\xi=0}\\
&=1+h^2
\end{split}
\end{equation}
Hence $I_1(g,r)=0$.
\begin{equation}
\begin{split}
I_2(f)&=\frac{1}{2\pi i}\oint_{\lvert\xi\rvert=1}\log(\lvert1+h\xi\rvert^2)\frac{1}{\xi^3}d\xi\\
&=\frac{1}{2\pi i}\left[\oint_{\lvert\xi\rvert=1}\frac{\log(1+h\xi)}{\xi^3}d\xi+\oint_{\lvert\xi\rvert=1}\frac{\log(1+h\xi^{-1}}{\xi^3}d\xi\right].
\end{split}
\end{equation}
First integral (3rd order pole):
$$\frac{1}{2\pi i }\oint_{\lvert \xi\rvert = 1}\frac{\log(1+h\xi)}{\xi^3}d\xi=\frac12\frac{\partial^2}{\partial\xi^2}\log(1+h\xi)\Bigg\lvert_{\xi=0}=-\frac{1}{2}h^2.$$
Second integral: $z=\xi^{-1},d\xi=-z^{-2}dz.$
$$\frac{1}{2\pi i}\oint_{\lvert\xi\rvert=1}\frac{\log(1+h\xi^{-1})}{\xi^3}d\xi=-\frac{1}{2\pi i}\oint_{\lvert z\rvert=1}\frac{\log(1+hz)}{z^{-3}}\frac{-1}{z^2}dz=\log(1+hz)\Bigg\rvert_{z=0}=0.$$
Now for the covariance terms:
\begin{equation}
\begin{split}
J_1(f,g,r)&=-\frac{1}{4\pi^2}\oint_{\lvert\xi_1\rvert=1}\oint_{\lvert\xi_2\rvert=1}\frac{\log(\lvert1+h\xi_1\rvert^2)\lvert1+h\xi_2\rvert^2}{(\xi_1-r\xi_2)^2}d\xi_1d\xi_2\\
&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\log(\lvert 1+h\xi_1\rvert^2)}{(\xi_1-r\xi_2)^2}d\xi_1\cdot \frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}\lvert 1+h\xi_2\rvert^2d\xi_2.
\end{split}
\end{equation}
First integral,
$$\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\log(\lvert 1+h\xi_1\rvert^2)}{(\xi_1-r\xi_2)^2}d\xi_1=\frac{1}{2\pi i}\left[\oint_{\lvert\xi_1\rvert=1}\frac{\log(1+h\xi)}{(\xi_1-r\xi_2)^2}d\xi_1+\oint_{\lvert\xi_1\rvert=1}\frac{\log(1+h\xi^{-1})}{(\xi_1-r\xi_2)^2}d\xi_1\right]=\frac{1}{2\pi i}[A+B].$$
Notice for $A$, for $\lvert \xi_2\rvert =1$ fixed, $\lvert r\xi_2\rvert>1$ so $r\xi_2$ not a pole.
$$A=0, z=\frac{1}{\xi_1}, d\xi_1=-z^{-2}dz.$$
\begin{equation}
\begin{split}
B&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\log(1+h\xi_1^{-1}}{(\xi_1-r\xi_2)^2}d\xi_1\\
&=-\frac{1}{2\pi i}\oint_{\lvert z\rvert=1}\frac{\log(1+hz)}{(z^{-1}-r\xi_2)^2}\frac{-1}{z^2}dz\\
&=\frac{1}{2\pi i}\frac{1}{(r\xi_2)^2}\oint_{\lvert z\rvert=1}\frac{\log(1+hz)}{(z-\frac{1}{r\xi_2})^2}dz\ \ \ \text{ 2nd order at $z=\frac{1}{r\xi_2}$}\\
&=\frac{1}{(r\xi_2)^2}\frac{\partial}{\partial z}(\log(1+hz))\Bigg\lvert_{z=\frac{1}{r\xi_2}}\\
&=\frac{h}{r\xi_2(r\xi_2+h)}
\end{split}
\end{equation}
Now,
\begin{equation}
\begin{split}
J_1(f,g,r)&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\log(\lvert 1+h\xi_1\rvert^2)}{(\xi_1-r\xi_2)^2}d\xi_1\cdot\frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}\lvert 1+h\xi_2\rvert^2d\xi_2\\
&=\frac{h}{2\pi ir^2}\oint_{\lvert\xi_2\rvert=1}\frac{(1+h\xi_2)(1+h\bar{\xi}_2)}{\xi_2(\xi_2+hr^{-1})}d\xi_2\\
&=\frac{h}{2\pi ir^2}\oint_{\lvert\xi_2\rvert=1}\frac{\xi_2+h\xi_2^2+h+h^2\xi_2}{\xi_2^2(\xi_2+hr^{-1})}d\xi_2\\
&=\frac{h}{2\pi ir^2}\left[\oint_{\lvert\xi_2\rvert=1}\frac{1+h^2}{\xi_2(\xi_2+hr^{-1})}d\xi_2+\oint_{\lvert\xi_2\rvert=1}\frac{h}{(\xi_2+hr^{-1})}d\xi_2+\oint_{\lvert\xi_2\rvert=1}\frac{h}{\xi_2^2(\xi_2+hr^{-1})}d\xi_2\right]\\
&=\frac{h}{2\pi i r^2}\left[0+2\pi ih + 0\right]\\
&=\frac{h^2}{r^2}.\\
J_1(f,f,r)&=\frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}f(\lvert 1+h\xi_2\rvert^2)\cdot \frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{f(\lvert 1+h\xi_2\rvert^2)}{(\xi_1-r\xi_2)^2}d\xi_1d\xi_2\\
&=\frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}f(\lvert 1+h\xi_2\rvert^2)\frac{h}{r\xi_2(r\xi_2+h)}d\xi_2\\
&= \frac{h}{2\pi ir^2}\oint_{\lvert\xi_2\rvert=1}\frac{\log(1+h\xi_2)}{\xi_2\left(\frac{h}r+\xi_2\right)}d\xi_2+\frac{h}{2\pi ir^2}\oint_{\lvert\xi_2\rvert=1}\frac{\log(1+h\xi_2^{-1})}{\xi_2\left(\frac{h}r +\xi_2\right)}d\xi_2\\
&=A+B.\\
A&=\frac{h}{r^2}\left[\frac{\log(1+h\xi_2)}{\frac{h}{r}+\xi_2}\Bigg\lvert_{\xi_2=0}+\frac{\log(1+h\xi_2)}{\xi_2}\Bigg\lvert_{\xi_2=-\frac{h}{r}}\right]\\
&=-\frac{1}{r^2}\log\left(1-\frac{h^2}{r}\right).\\
B&=\frac{-h}{2\pi ir^2}\oint_{\lvert z\rvert=1}\frac{\log(1+hz)}{z^{-1}\left(\frac{h}{r}+z^{-1}\right)}\frac{-1}{z^2}dz\\
&=\frac{1}{2\pi ir}\oint_{\lvert z\rvert=1}\frac{\log(1+hz)}{z+rh^{-1}}dz=0\ \text{not a pole since $\lvert r/h\rvert >1$}\\
\end{split}
\end{equation}
Hence, $J_1(f,f,r)=-\frac{1}{r}\log(1-\frac{h^2}{r}).$
$$J_1(g,g,r)=\frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}\lvert 1+h\xi_2\rvert^2\cdot \frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\lvert 1+h\xi\rvert ^2}{(\xi_1-r\xi_2)^2}d\xi_1d\xi_2.$$
and
\begin{equation}
\begin{split}
\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\lvert 1+h\xi_1\rvert^2}{(\xi_1-r\xi_2)^2}d\xi_1&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\xi_1+h\xi_1^2+h+h^2\xi_1}{\xi_1(\xi_1-r\xi_2)}d\xi_1\\
&=\frac{1}{2\pi i}\left[\oint_{\lvert\xi_1\rvert=1}\frac{1+h^2}{(\xi_1-r\xi_2)^2}d\xi_1+\oint_{\lvert\xi_1\rvert=1}\frac{h\xi_1}{(\xi_1-r\xi_2)^2}d\xi_1+\oint_{\lvert\xi_1\rvert=1}\frac{h}{\xi_1(\xi_1-r\xi_2)^2}d\xi_1\right]\\
&=\frac{1}{2\pi i}\left[0+0+\frac{2\pi ih}{r^2\xi_2^2}\right]\\
&=\frac{h}{r^2\xi_2^2}.
\end{split}
\end{equation}
since $2\pi i \frac{h}{(\xi_1-r\xi_2)^2}\Bigg\lvert_{\xi_1=0}=\frac{2\pi ih}{r^2\xi_2^2}$.
Therefore,
\begin{equation}
\begin{split}
J_1(g,g,r)&=\frac{h}{2\pi ir^2}\oint_{\lvert\xi_2\rvert=1}\frac{\xi_2+h\xi_2+h+h^2\xi_2}{\xi_2^2}d\xi_2\\
&=\frac{h}{2\pi ir^2}\left[\oint_{\lvert\xi_2\rvert=1}\frac{1+h^2}{\xi_2^2}d\xi_2+\oint_{\lvert\xi_2\rvert=1}\frac{h}{\xi_2}d\xi_2+\oint_{\lvert\xi_2\rvert=1}\frac{h}{\xi_2^3}d\xi_2\right]\\
&=\frac{h^2}{r^2}.
\end{split}
\end{equation}
Now we have to calculate all the $J_2$ terms:
$$J_2(f,g), J_2(f,f), J_2(g,g).$$
$$J_2(F,G)=-\frac{1}{4\pi^2}\oint_{\lvert\xi_1\rvert=1}\frac{F(\lvert 1+h\xi_1\rvert^2)}{\xi_1^2}d\xi_1\oint_{\lvert\xi_2\rvert=1}\frac{G(\lvert 1+h\xi_2\rvert ^2)}{\xi_2^2}d\xi_2$$
First notice that
\begin{equation}
\begin{split}
\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\log(1+h\xi_1\rvert^2)}{\xi_1^2}d\xi_1&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{\log(1+h\xi_1)+\log(1+h\xi_1^{-1})}{\xi_1^2}d\xi_1\\
&=\frac{1}{2\pi i}\left[2\pi i\left[\frac{\partial}{\partial\xi_1}\log(1+h\xi_1)\right]\bigg\rvert_{\xi_1=0}-\oint_{\lvert z\rvert=1}\frac{\log(1+hz)}{z^{-2}}\frac{-1}{z^2}dz\right]\\
&=h-0\\
&=h
\end{split}
\end{equation}
And we have
\begin{equation}
\begin{split}
\frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}\frac{g(\lvert 1+h\xi_2\rvert^2)}{\xi_2^2}d\xi_2&=\frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}\frac{\xi_2+h\xi_2^2+h+h^2\xi_2}{\xi_2^3}d\xi_2=h\\
J_2(f,g)&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{f(\lvert 1+h\xi_2\rvert^2)}{\xi_1^2} d\xi_1\cdot \frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}\frac{g(\lvert 1+h\xi_2\rvert^2)}{\xi_2^2}d\xi_2=h^2\\
J_2(f,f)&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{f(\lvert 1+h\xi_2\rvert^2)}{\xi_1^2}d\xi_1\cdot \oint_{\lvert\xi_2\rvert=1}\frac{f(\lvert 1+h\xi_2\rvert^2)}{\xi_2^2}d\xi_2=h^2\\
J_2(g,g,)&=\frac{1}{2\pi i}\oint_{\lvert\xi_1\rvert=1}\frac{g(\lvert 1+h\xi_1\rvert^2)}{\xi_1^2}d\xi_1\cdot\frac{1}{2\pi i}\oint_{\lvert\xi_2\rvert=1}\frac{g(\lvert 1+h\xi_2\rvert ^2}{\xi_2^2}d\xi_2=h^2
\end{split}
\end{equation}
\end{proof}
\end{document}