We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I want to train SiamRPN, but I get this error,
/home/honda/SiamDW/siamese_tracking/../lib/core/config.py:183: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details. exp_config = edict(yaml.load(f)) => creating logs/SiamRPNRes22 => creating logs/SiamRPNRes22/SiamRPNRes22_2020-11-17-22-10 Namespace(cfg='experiments/train/SiamRPN.yaml', gpus='1', workers=None) {'CHECKPOINT_DIR': 'snapshot', 'GPUS': '1', 'OUTPUT_DIR': 'logs', 'PRINT_FREQ': 10, 'SIAMFC': {'DATASET': {'BLUR': 0, 'COLOR': 1, 'FLIP': 0, 'GOT10K': {'ANNOTATION': '/home/zhbli/Dataset/data3/got10k/train.json', 'PATH': '/home/zhbli/Dataset/data3/got10k/crop511'}, 'ROTATION': 0, 'SCALE': 0.05, 'SHIFT': 4, 'VID': {'ANNOTATION': '/home/zhbli/Dataset/data2/vid/train.json', 'PATH': '/home/zhbli/Dataset/data2/vid/crop511'}}, 'TEST': {'DATA': 'VOT2015', 'END_EPOCH': 50, 'MODEL': 'SiamFCIncep22', 'START_EPOCH': 30}, 'TRAIN': {'BATCH': 32, 'END_EPOCH': 50, 'LR': 0.001, 'LR_END': 1e-07, 'LR_POLICY': 'log', 'MODEL': 'SiamFCIncep22', 'MOMENTUM': 0.9, 'PAIRS': 200000, 'PRETRAIN': 'resnet23_inlayer.model', 'RESUME': False, 'SEARCH_SIZE': 255, 'START_EPOCH': 0, 'STRIDE': 8, 'TEMPLATE_SIZE': 127, 'WEIGHT_DECAY': 0.0001, 'WHICH_USE': 'GOT10K'}, 'TUNE': {'DATA': 'VOT2015', 'METHOD': 'GENE', 'MODEL': 'SiamFCIncep22'}}, 'SIAMRPN': {'DATASET': {'BLUR': 0.2, 'COCO': {'ANNOTATION': '/home/honda/data/data/coco/train2017.json', 'PATH': '/home/honda/data/coco/crop271', 'RANGE': 1, 'USE': 100000}, 'COLOR': 1, 'DET': {'ANNOTATION': '/home/honda/data/det/train.json', 'PATH': '/home/honda/data/det/crop271', 'RANGE': 100, 'USE': 100000}, 'FLIP': 0, 'GOT10K': {'ANNOTATION': '/home/honda/data/data/got10k/train.json', 'PATH': '/home/honda/data/got10k/crop271', 'RANGE': 100, 'USE': 200000}, 'LASOT': {'ANNOTATION': '/home/honda/data/data/lasot/train2017.json', 'PATH': '/home/honda/data/lasot/crop271', 'RANGE': 100, 'USE': 200000}, 'ROTATION': 0, 'SCALE': 0.05, 'SHIFT': 4, 'VID': {'ANNOTATION': '/home/honda/data/Copy of ' 'SiamDW_DATA/VID/train.json', 'PATH': '/home/honda/data/Copy of ' 'SiamDW_DATA/VID/crop255', 'RANGE': 100, 'USE': 200000}, 'YTB': {'ANNOTATION': '/home/honda/data/y2b/train.json', 'PATH': '/home/honda/data/y2b/crop271', 'RANGE': 3, 'USE': 200000}}, 'TEST': {'DATA': 'VOT2016', 'END_EPOCH': 50, 'ISTRUE': True, 'MODEL': 'SiamRPNRes22', 'START_EPOCH': 20, 'THREADS': 16}, 'TRAIN': {'ANCHORS_ALL_KEEP': 64, 'ANCHORS_POS_KEEP': 16, 'ANCHORS_RATIOS': [0.33, 0.5, 1, 2, 3], 'ANCHORS_SCALES': [8], 'ANCHORS_THR_HIGH': 0.6, 'ANCHORS_THR_LOW': 0.3, 'BATCH': 32, 'CLS_TYPE': 'thicker', 'CLS_WEIGHT': 1, 'END_EPOCH': 50, 'ISTRUE': True, 'LR': 0.01, 'LR_END': 1e-05, 'LR_POLICY': 'log', 'MODEL': 'SiamRPNRes22', 'MOMENTUM': 0.9, 'PRETRAIN': 'CIResNet22_PRETRAIN.model', 'REG_WEIGHT': 1, 'RESUME': False, 'SEARCH_SIZE': 255, 'START_EPOCH': 0, 'STRIDE': 8, 'TEMPLATE_SIZE': 127, 'WEIGHT_DECAY': 0.0005, 'WHICH_USE': ['YTB', 'VID']}, 'TUNE': {'DATA': 'VOT2016', 'ISTRUE': False, 'METHOD': 'TPE', 'MODEL': 'SiamRPNRes22'}}, 'WORKERS': 32} /home/honda/SiamDW/siamese_tracking/../lib/models/modules.py:188: UserWarning: nn.init.kaiming_normal is now deprecated in favor of nn.init.kaiming_normal_. nn.init.kaiming_normal(m.weight, mode='fan_out') /home/honda/SiamDW/siamese_tracking/../lib/models/modules.py:190: UserWarning: nn.init.constant is now deprecated in favor of nn.init.constant_. nn.init.constant(m.weight, 1) /home/honda/SiamDW/siamese_tracking/../lib/models/modules.py:191: UserWarning: nn.init.constant is now deprecated in favor of nn.init.constant_. nn.init.constant(m.bias, 0) SiamRPNRes22( (criterion): BCEWithLogitsLoss() (features): ResNet22( (features): ResNet( (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (layer1): Sequential( (0): Bottleneck_CI( (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): Bottleneck_CI( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (2): Bottleneck_CI( (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) (layer2): Sequential( (0): Bottleneck_CI( (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) (downsample): Sequential( (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (2): Bottleneck_CI( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (3): Bottleneck_CI( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) (4): Bottleneck_CI( (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): ReLU(inplace=True) ) ) ) ) (connect_model): RPN_Up( (template_cls): Conv2d(512, 5120, kernel_size=(3, 3), stride=(1, 1)) (template_reg): Conv2d(512, 10240, kernel_size=(3, 3), stride=(1, 1)) (search_cls): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1)) (search_reg): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1)) (adjust): Conv2d(20, 20, kernel_size=(1, 1), stride=(1, 1)) ) ) load pretrained model from ./pretrain/CIResNet22_PRETRAIN.model remove prefix 'module.' missing keys:{'connect_model.adjust.weight', 'features.features.layer2.3.bn2.num_batches_tracked', 'features.features.layer2.4.bn3.num_batches_tracked', 'connect_model.adjust.bias', 'features.features.layer1.2.bn3.num_batches_tracked', 'connect_model.search_cls.weight', 'features.features.layer2.2.bn2.num_batches_tracked', 'connect_model.template_cls.bias', 'features.features.layer2.0.bn3.num_batches_tracked', 'connect_model.template_reg.bias', 'features.features.layer1.2.bn2.num_batches_tracked', 'connect_model.search_reg.weight', 'features.features.layer2.2.bn1.num_batches_tracked', 'features.features.layer2.4.bn1.num_batches_tracked', 'features.features.layer1.0.bn2.num_batches_tracked', 'features.features.layer2.4.bn2.num_batches_tracked', 'features.features.layer1.2.bn1.num_batches_tracked', 'features.features.layer2.3.bn3.num_batches_tracked', 'features.features.layer1.0.bn3.num_batches_tracked', 'features.features.layer2.3.bn1.num_batches_tracked', 'features.features.layer1.0.downsample.1.num_batches_tracked', 'features.features.layer1.1.bn2.num_batches_tracked', 'features.features.layer1.0.bn1.num_batches_tracked', 'connect_model.template_cls.weight', 'features.features.layer2.0.bn2.num_batches_tracked', 'features.features.layer2.0.bn1.num_batches_tracked', 'features.features.layer1.1.bn3.num_batches_tracked', 'features.features.layer2.2.bn3.num_batches_tracked', 'features.features.layer2.0.downsample.1.num_batches_tracked', 'features.features.layer1.1.bn1.num_batches_tracked', 'connect_model.search_cls.bias', 'features.features.bn1.num_batches_tracked', 'connect_model.search_reg.bias', 'connect_model.template_reg.weight'} unused checkpoint keys:set() trainable params: features.features.layer2.4.conv1.weight features.features.layer2.4.bn1.weight features.features.layer2.4.bn1.bias features.features.layer2.4.conv2.weight features.features.layer2.4.bn2.weight features.features.layer2.4.bn2.bias features.features.layer2.4.conv3.weight features.features.layer2.4.bn3.weight features.features.layer2.4.bn3.bias connect_model.template_cls.weight connect_model.template_cls.bias connect_model.template_reg.weight connect_model.template_reg.bias connect_model.search_cls.weight connect_model.search_cls.bias connect_model.search_reg.weight connect_model.search_reg.bias connect_model.adjust.weight connect_model.adjust.bias GPU NUM: 1 model prepare done train datas: ['YTB', 'VID'] YTB loaded. VID loaded. dataset length 400000 {'GPUS': '1', 'WORKERS': 32, 'PRINT_FREQ': 10, 'OUTPUT_DIR': 'logs', 'CHECKPOINT_DIR': 'snapshot', 'SIAMFC': {'TRAIN': {'MODEL': 'SiamFCIncep22', 'RESUME': False, 'START_EPOCH': 0, 'END_EPOCH': 50, 'TEMPLATE_SIZE': 127, 'SEARCH_SIZE': 255, 'STRIDE': 8, 'BATCH': 32, 'PAIRS': 200000, 'PRETRAIN': 'resnet23_inlayer.model', 'LR_POLICY': 'log', 'LR': 0.001, 'LR_END': 1e-07, 'MOMENTUM': 0.9, 'WEIGHT_DECAY': 0.0001, 'WHICH_USE': 'GOT10K'}, 'TEST': {'MODEL': 'SiamFCIncep22', 'DATA': 'VOT2015', 'START_EPOCH': 30, 'END_EPOCH': 50}, 'TUNE': {'MODEL': 'SiamFCIncep22', 'DATA': 'VOT2015', 'METHOD': 'GENE'}, 'DATASET': {'VID': {'PATH': '/home/zhbli/Dataset/data2/vid/crop511', 'ANNOTATION': '/home/zhbli/Dataset/data2/vid/train.json'}, 'GOT10K': {'PATH': '/home/zhbli/Dataset/data3/got10k/crop511', 'ANNOTATION': '/home/zhbli/Dataset/data3/got10k/train.json'}, 'SHIFT': 4, 'SCALE': 0.05, 'COLOR': 1, 'FLIP': 0, 'BLUR': 0, 'ROTATION': 0}}, 'SIAMRPN': {'DATASET': {'VID': {'PATH': '/home/honda/data/Copy of SiamDW_DATA/VID/crop255', 'ANNOTATION': '/home/honda/data/Copy of SiamDW_DATA/VID/train.json', 'RANGE': 100, 'USE': 200000}, 'YTB': {'PATH': '/home/honda/data/y2b/crop271', 'ANNOTATION': '/home/honda/data/y2b/train.json', 'RANGE': 3, 'USE': 200000}, 'COCO': {'PATH': '/home/honda/data/coco/crop271', 'ANNOTATION': '/home/honda/data/data/coco/train2017.json', 'RANGE': 1, 'USE': 100000}, 'DET': {'PATH': '/home/honda/data/det/crop271', 'ANNOTATION': '/home/honda/data/det/train.json', 'RANGE': 100, 'USE': 100000}, 'GOT10K': {'PATH': '/home/honda/data/got10k/crop271', 'ANNOTATION': '/home/honda/data/data/got10k/train.json', 'RANGE': 100, 'USE': 200000}, 'LASOT': {'PATH': '/home/honda/data/lasot/crop271', 'ANNOTATION': '/home/honda/data/data/lasot/train2017.json', 'RANGE': 100, 'USE': 200000}, 'SHIFT': 4, 'SCALE': 0.05, 'COLOR': 1, 'FLIP': 0, 'BLUR': 0.2, 'ROTATION': 0}, 'TRAIN': {'MODEL': 'SiamRPNRes22', 'RESUME': False, 'START_EPOCH': 0, 'END_EPOCH': 50, 'TEMPLATE_SIZE': 127, 'SEARCH_SIZE': 255, 'STRIDE': 8, 'BATCH': 32, 'PRETRAIN': 'CIResNet22_PRETRAIN.model', 'LR_POLICY': 'log', 'LR': 0.01, 'LR_END': 1e-05, 'MOMENTUM': 0.9, 'WEIGHT_DECAY': 0.0005, 'CLS_WEIGHT': 1, 'REG_WEIGHT': 1, 'WHICH_USE': ['YTB', 'VID'], 'ANCHORS_RATIOS': [0.33, 0.5, 1, 2, 3], 'ANCHORS_SCALES': [8], 'ANCHORS_THR_HIGH': 0.6, 'ANCHORS_THR_LOW': 0.3, 'ANCHORS_POS_KEEP': 16, 'ANCHORS_ALL_KEEP': 64, 'ISTRUE': True, 'CLS_TYPE': 'thicker'}, 'TEST': {'MODEL': 'SiamRPNRes22', 'DATA': 'VOT2016', 'START_EPOCH': 20, 'END_EPOCH': 50, 'ISTRUE': True, 'THREADS': 16}, 'TUNE': {'MODEL': 'SiamRPNRes22', 'DATA': 'VOT2016', 'METHOD': 'TPE', 'ISTRUE': False}}} Traceback (most recent call last): File "siamese_tracking/train_siamrpn.py", line 200, in main() File "siamese_tracking/train_siamrpn.py", line 190, in main logger, cls_type = config.SIAMRPN.TRAIN.CLS_TYPE) File "/home/honda/SiamDW/siamese_tracking/../lib/core/function.py", line 73, in siamrpn_train model, optimizer = unfix_more(model, optimizer, epoch, cfg, cur_lr, logger) File "/home/honda/SiamDW/siamese_tracking/../lib/core/function.py", line 142, in unfix_more if model.module.features.unfix(epoch / cfg.SIAMFC.TRAIN.END_EPOCH): File "/home/honda/anaconda3/envs/siamdw/lib/python3.7/site-packages/torch/nn/modules/module.py", line 779, in getattr type(self).name, name)) torch.nn.modules.module.ModuleAttributeError: 'SiamRPNRes22' object has no attribute 'module'
Please, some advice
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I want to train SiamRPN, but I get this error,
Please, some advice
The text was updated successfully, but these errors were encountered: