-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInst_Spec.v
420 lines (376 loc) · 11.4 KB
/
Inst_Spec.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
(* Instantiation of the CN-exported specification
using results from the prior theories. *)
Require Import ZArith Bool Lia.
Require CN_Lemmas.Pages_Aligned CN_Lemmas.Gen_Spec.
Module Inst.
Definition order_align := CN_Lemmas.Buddy_Aligned.order_align.
Definition order_aligned := CN_Lemmas.Buddy_Aligned.order_aligned_b.
Definition page_size_of_order := CN_Lemmas.Pages_Aligned.page_size_of_order.
Definition pfn_buddy := CN_Lemmas.Buddy_Aligned.buddy.
Definition pages_no_overlap : ((Z -> Z * Z * Z * (Z * Z)) -> Z -> Z -> Prop)
:= CN_Lemmas.Pages_Aligned.pages_no_overlap.
Definition page_aligned := CN_Lemmas.Pages_Aligned.page_aligned.
End Inst.
Module Defs := CN_Lemmas.Gen_Spec.Defs (Inst).
Module Proofs.
(* now prove lemmas *)
Import Defs Inst CN_Lemmas.Pages_Aligned CN_Lemmas.Buddy_Aligned.
Open Scope Z.
Lemma le_triv:
forall n m, n <= m -> n <= m.
Proof.
auto.
Qed.
Ltac lia_ineq :=
match goal with
| |- (_ <= _) => lia
| |- (_ < _) => lia
| _ => try fail
end.
Ltac order_aligned_b1 :=
match goal with H : Is_true (order_aligned_b _ _) |- _
=> apply order_aligned_b_true1 in H; lia_ineq
| |- Is_true (order_aligned_b _ _)
=> apply order_aligned_b_true2; lia_ineq
| _ => fail
end.
Ltac order_aligned_b := repeat order_aligned_b1.
Lemma order_dec_inv: order_dec_inv_type.
Proof.
unfold order_dec_inv_type, Inst.order_aligned, Inst.page_size_of_order.
intros.
constructor; order_aligned_b.
-
apply order_aligned_sz_mono with (order1 := order1); auto.
-
pose (p := page_size_of_order_mono order2 order1).
apply le_triv in p; lia.
Qed.
Lemma lemma2: lemma2_type.
Proof.
unfold lemma2_type, Inst.order_aligned, Inst.page_size_of_order,
Inst.pfn_buddy, Inst.page_aligned.
intros.
order_aligned_b.
rewrite buddy_lt_eq by lia.
match goal with |- ?x /\ _ => assert x end.
destruct (order_aligned_b p_i (order + 1)) eqn:al; auto using Is_true_eq_left.
order_aligned_b.
apply buddy_higher_aligned; auto; lia.
constructor; auto.
constructor.
apply page_aligned_times_4096; try lia.
order_aligned_b.
auto.
apply pfn_add_sub_eq_pfn_times_4096; try lia.
Qed.
Lemma extract_l: extract_l_type.
Proof.
unfold extract_l_type, Inst.order_aligned,
Inst.page_size_of_order, Inst.pfn_buddy, Inst.page_aligned.
intros.
constructor.
apply Is_true_eq_true in H0.
unfold buddy.
rewrite H0.
rewrite Z.mul_add_distr_r, page_size_of_order_times_4096; auto.
order_aligned_b.
constructor; apply page_aligned_times_4096; try lia.
apply order_aligned_sz_mono with (order1 := order + 1);
auto; lia.
apply order_aligned_buddy; try lia.
apply order_aligned_sz_mono with (order1 := order + 1);
auto; lia.
Qed.
Lemma page_size_of_order_inc: page_size_of_order_inc_type.
Proof.
unfold page_size_of_order_inc_type, Inst.page_size_of_order.
intros.
apply page_size_of_order_inc.
lia.
Qed.
Lemma lemma4: lemma4_type.
Proof.
unfold lemma4_type, Inst.order_aligned, Inst.pfn_buddy,
Inst.page_size_of_order, Inst.order_align.
intros.
rewrite<- page_size_of_order_inc2, Z.sub_simpl_r by lia.
repeat constructor;
auto;
try (apply page_size_of_order_pos; lia).
-
order_aligned_b.
rewrite aligned_lower_buddy_eq; try lia; auto.
-
unfold buddy.
rewrite Z.sub_simpl_r.
apply Is_true_eq_true in H0.
rewrite H0.
rewrite Z.mul_add_distr_r, page_size_of_order_times_4096 by lia.
auto.
-
unfold Inst.order_align.
apply align_buddy_eq; try lia.
order_aligned_b.
auto.
Qed.
Lemma order_aligned_init: order_aligned_init_type.
Proof.
unfold order_aligned_init_type.
unfold Inst.order_aligned, order_aligned_b, order_align.
intros.
simpl.
rewrite Z.mod_1_r, Z.sub_0_r, Z.eqb_refl.
simpl.
auto.
Qed.
Lemma page_size_of_order : page_size_of_order_type.
Proof.
unfold page_size_of_order_type.
unfold Inst.page_size_of_order, page_size_of_order.
cbv.
auto.
Qed.
Lemma buddy_idemp_impossible3:
forall n sz,
0 <= sz ->
(n =? buddy n sz) = false.
Proof.
intros.
destruct (n =? buddy n sz) eqn: x; auto.
rewrite Z.eqb_eq in x.
apply eq_sym in x.
rewrite buddy_idemp_impossible in x; auto.
lia.
Qed.
Lemma find_buddy_xor : find_buddy_xor_type.
Proof.
unfold find_buddy_xor_type, Inst.order_aligned,
Inst.pfn_buddy.
intros.
order_aligned_b.
assert (pw12: 4096 = 2 ^ 12) by (cbv; auto).
repeat constructor; pow_sign.
- apply Z.pow_lt_mono_r; try lia.
- rewrite Z.lxor_nonneg.
rewrite iff_to_and.
constructor; intros; pow_sign.
- rewrite pw12 in *.
rewrite<- Z.pow_add_r by lia.
apply lxor_lt_pow2; try apply Z.pow_lt_mono_r; pow_sign.
- apply lxor_eq_buddy_times_page; auto.
- apply Z.bits_inj_0.
intros.
rewrite pw12, Z.testbit_mod_pow2, Z.lxor_spec by lia.
destruct (n <? 12) eqn: n_lt; auto.
rewrite Z.ltb_lt in n_lt.
rewrite (Z.mul_comm (2 ^ 12)).
repeat rewrite Z.mul_pow2_bits_low by lia.
auto.
- order_aligned_b.
rewrite lxor_eq_buddy_times_page by (auto; lia).
apply order_aligned_buddy; auto.
- rewrite lxor_eq_buddy_times_page by (auto; lia).
rewrite<- Z.eqb_neq.
rewrite buddy_idemp_impossible3; auto.
Qed.
Lemma page_size_of_order2: page_size_of_order2_type.
Proof.
unfold page_size_of_order2_type, Inst.page_size_of_order.
intros.
rewrite (Z.mul_comm 4096).
rewrite page_size_of_order_times_4096 by lia.
repeat constructor; auto; pow_sign.
apply Z.pow_lt_mono_r; lia.
Qed.
Ltac is_true_or_step :=
match goal with H : Is_true (_ || _) |- _
=> apply orb_prop_elim in H
| H: Is_true (_ <? _) |- _
=> apply Is_true_eq_true in H; rewrite Z.ltb_lt in H
| H: Is_true (_ <=? _) |- _
=> apply Is_true_eq_true in H; rewrite Z.leb_le in H
| H: Is_true (_ =? _) |- _
=> apply Is_true_eq_true in H; rewrite Z.eqb_eq in H
| H: _ \/ _ |- _ => destruct H
| _ => fail
end.
Ltac is_true_or := repeat is_true_or_step.
Lemma forall_group_ok_to_inv:
forall V pool start_i end_i,
start_i = get_range_start_1_4 pool / 4096 ->
(forall i : Z, start_i <= i < end_i -> page_group_ok i V pool)
<->
group_ok_inv start_i end_i 11 hyp_no_order (fun i => get_order_1_3 (V i)).
Proof.
intros.
unfold group_ok_inv.
constructor.
- intros.
pose (X := H0 _ H1).
unfold page_group_ok, Inst.order_align in X.
destruct X as [X2 | X2]; try lia.
destruct (Zle_lt_or_eq (order_align i ord) i); auto.
apply order_align_le; auto; lia.
pose (H_ord := X2 ord).
apply (Decidable.not_and _) in H_ord;
repeat apply Decidable.dec_and;
try apply Z.lt_decidable;
try apply Z.le_decidable; try lia.
- intros.
unfold page_group_ok, Inst.order_align.
destruct (get_order_1_3 (V i) =? hyp_no_order) eqn: inval_cases.
+ rewrite Z.eqb_eq in inval_cases.
auto.
+ rewrite Z.eqb_neq in inval_cases.
constructor 2.
intros.
destruct (H0 _ i0 H1); try lia.
Qed.
Lemma group_ok_inv_eq_orders:
forall start_i end_i o_max o_inval orders orders2,
group_ok_inv start_i end_i o_max o_inval orders ->
(forall i, orders2 i = orders i) ->
group_ok_inv start_i end_i o_max o_inval orders2.
Proof.
unfold group_ok_inv.
intros.
rewrite H0 in *.
apply H; auto.
Qed.
Ltac split_if_anon :=
match goal with |- context [if ?P then _ else _] =>
destruct P
end.
Lemma get_upd_order_1_3:
forall {A : Type} (t : Z * Z * A) x, get_order_1_3 (upd_order_1_3 t x) = x.
Proof.
intros.
unfold get_order_1_3, upd_order_1_3.
destruct t.
destruct p.
auto.
Qed.
Lemma get_fun_upd:
forall {A B : Type} (f : A -> B) g x y i,
f (fun_upd Z.eqb g x y i) =
if x =? i
then f y
else f (g i).
Proof.
intros.
unfold fun_upd.
split_if_anon; auto.
Qed.
Ltac conjI :=
match goal with |- _ /\ _ => constructor end.
Ltac conjunctsI := repeat conjI.
Ltac lia2 :=
try lia;
try (apply Z.div_le_lower_bound; lia);
try (apply Z.div_lt_upper_bound; lia).
Lemma order_align_inv_loop : order_align_inv_loop_type.
Proof.
unfold order_align_inv_loop_type, Inst.order_align,
Inst.order_aligned.
intros until p.
rewrite forall_group_ok_to_inv; try reflexivity.
rewrite forall_group_ok_to_inv; try reflexivity.
pose (start_i := get_range_start_1_4 pool / 4096).
fold start_i.
pose (end_i := get_range_end_2_4 pool / 4096).
fold end_i.
intros.
order_aligned_b.
match goal with |- context [pfn_buddy ?pgx _] =>
pose (pg := pgx) end.
match goal with m: group_ok_inv _ _ _ _ _ |- _ =>
rename m into g_ok end.
unfold hyp_no_order in *.
apply (group_ok_inv_split pg) in g_ok;
(try unfold pg, CN_Lib.array_shift in *); try lia2; auto.
eapply group_ok_inv_eq_orders.
apply g_ok.
clear g_ok.
intros.
unfold fun_upd, Defs.fun_upd, Inst.pfn_buddy.
fold pg.
repeat split_if_anon; repeat rewrite get_upd_order_1_3; auto.
Qed.
Lemma page_group_ok_easy : page_group_ok_easy_type.
Proof.
unfold page_group_ok_easy_type, Inst.order_align.
intros until V.
rewrite forall_group_ok_to_inv; try reflexivity.
intros.
conjunctsI; auto.
apply group_ok_inv_0_order.
auto.
Qed.
Lemma attach_inc_loop : attach_inc_loop_type.
unfold attach_inc_loop_type, Inst.order_align,
Inst.order_aligned, Inst.pfn_buddy.
intros until order.
rewrite forall_group_ok_to_inv; try reflexivity.
rewrite forall_group_ok_to_inv; try reflexivity.
intros.
order_aligned_b.
unfold hyp_no_order in *.
match goal with |- context [buddy ?pgx _] =>
pose (pg := pgx) end.
fold pg.
match goal with g_okx: group_ok_inv _ _ _ _ _ |- _ =>
pose (g_ok := g_okx); fold pg in g_ok end.
rewrite buddy_lt_eq in * by lia.
destruct (order_aligned_b pg (order + 1)) eqn: is_al.
- apply Is_true_eq_left in is_al.
order_aligned_b.
apply (group_ok_inv_join pg) in g_ok;
repeat rewrite (get_fun_upd get_order_1_3);
repeat rewrite get_upd_order_1_3;
repeat rewrite Z.eqb_refl;
auto; unfold CN_Lib.array_shift in *; try lia2.
+ eapply group_ok_inv_eq_orders.
* apply g_ok.
* clear g_ok.
intros.
unfold Defs.fun_upd, fun_upd.
rewrite Z.eqb_refl.
split_if x; repeat rewrite get_upd_order_1_3; auto.
split_if y; repeat rewrite get_upd_order_1_3; auto.
+ split_if x; auto.
- pose (buddy_le := is_al).
rewrite<- buddy_lt_eq in buddy_le by lia.
rewrite Z.ltb_ge in buddy_le.
match goal with b: get_order_1_3 (V (buddy _ _)) =_ |- _ =>
pose (buddy_order := b) end.
apply (group_ok_inv_join (buddy pg order)) in g_ok;
unfold pg in *;
repeat rewrite (get_fun_upd get_order_1_3);
repeat rewrite buddy_idemp_impossible3;
repeat rewrite Z.eqb_refl;
repeat rewrite get_upd_order_1_3;
repeat rewrite buddy_order;
auto; try lia.
+ eapply group_ok_inv_eq_orders.
* apply g_ok.
* clear g_ok.
unfold fun_upd, Defs.fun_upd.
intros.
rewrite buddy_idemp_impossible3 by lia.
rewrite H4.
rewrite buddy_involution_gt_case; auto.
split_if x; repeat rewrite get_upd_order_1_3; try lia.
split_if y; repeat rewrite get_upd_order_1_3; try lia.
rewrite Z.eqb_eq in y.
rewrite y in *.
auto.
+ apply buddy_higher_aligned; auto.
+ rewrite buddy_involution_gt_case; auto.
rewrite Z.eqb_refl; auto.
Qed.
End Proofs.
Module InstOK: CN_Lemmas.Gen_Spec.Lemma_Spec(Inst).
Module D := CN_Lemmas.Gen_Spec.Defs (Inst).
Include Proofs.
End InstOK.