forked from dgriff777/a3c_continuous
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·172 lines (164 loc) · 4.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from __future__ import print_function, division
import os
os.environ["OMP_NUM_THREADS"] = "1"
import argparse
import torch
import torch.multiprocessing as mp
from environment import create_env
from model import A3C_MLP, A3C_CONV
from train import train
from test import test
from shared_optim import SharedRMSprop, SharedAdam
import time
parser = argparse.ArgumentParser(description='A3C')
parser.add_argument(
'--lr',
type=float,
default=0.0001,
metavar='LR',
help='learning rate (default: 0.0001)')
parser.add_argument(
'--gamma',
type=float,
default=0.99,
metavar='G',
help='discount factor for rewards (default: 0.99)')
parser.add_argument(
'--tau',
type=float,
default=1.00,
metavar='T',
help='parameter for GAE (default: 1.00)')
parser.add_argument(
'--seed',
type=int,
default=1,
metavar='S',
help='random seed (default: 1)')
parser.add_argument(
'--workers',
type=int,
default=32,
metavar='W',
help='how many training processes to use (default: 32)')
parser.add_argument(
'--num-steps',
type=int,
default=20,
metavar='NS',
help='number of forward steps in A3C (default: 300)')
parser.add_argument(
'--max-episode-length',
type=int,
default=10000,
metavar='M',
help='maximum length of an episode (default: 10000)')
parser.add_argument(
'--env',
default='BipedalWalker-v2',
metavar='ENV',
help='environment to train on (default: BipedalWalker-v2)')
parser.add_argument(
'--shared-optimizer',
default=True,
metavar='SO',
help='use an optimizer without shared statistics.')
parser.add_argument(
'--load',
default=False,
metavar='L',
help='load a trained model')
parser.add_argument(
'--save-max',
default=True,
metavar='SM',
help='Save model on every test run high score matched or bested')
parser.add_argument(
'--optimizer',
default='Adam',
metavar='OPT',
help='shares optimizer choice of Adam or RMSprop')
parser.add_argument(
'--load-model-dir',
default='trained_models/',
metavar='LMD',
help='folder to load trained models from')
parser.add_argument(
'--save-model-dir',
default='trained_models/',
metavar='SMD',
help='folder to save trained models')
parser.add_argument(
'--log-dir',
default='logs/',
metavar='LG',
help='folder to save logs')
parser.add_argument(
'--model',
default='MLP',
metavar='M',
help='Model type to use')
parser.add_argument(
'--stack-frames',
type=int,
default=1,
metavar='SF',
help='Choose number of observations to stack')
parser.add_argument(
'--gpu-ids',
type=int,
default=-1,
nargs='+',
help='GPUs to use [-1 CPU only] (default: -1)')
parser.add_argument(
'--amsgrad',
default=True,
metavar='AM',
help='Adam optimizer amsgrad parameter')
# Based on
# https://github.com/pytorch/examples/tree/master/mnist_hogwild
# Training settings
# Implemented multiprocessing using locks but was not beneficial. Hogwild
# training was far superior
if __name__ == '__main__':
args = parser.parse_args()
torch.manual_seed(args.seed)
if args.gpu_ids == -1:
args.gpu_ids = [-1]
else:
torch.cuda.manual_seed(args.seed)
mp.set_start_method('spawn')
env = create_env(args.env, args)
if args.model == 'MLP':
shared_model = A3C_MLP(
env.observation_space.shape[0], env.action_space, args.stack_frames)
if args.model == 'CONV':
shared_model = A3C_CONV(args.stack_frames, env.action_space)
if args.load:
saved_state = torch.load('{0}{1}.dat'.format(
args.load_model_dir, args.env), map_location=lambda storage, loc: storage)
shared_model.load_state_dict(saved_state)
shared_model.share_memory()
if args.shared_optimizer:
if args.optimizer == 'RMSprop':
optimizer = SharedRMSprop(shared_model.parameters(), lr=args.lr)
if args.optimizer == 'Adam':
optimizer = SharedAdam(
shared_model.parameters(), lr=args.lr, amsgrad=args.amsgrad)
optimizer.share_memory()
else:
optimizer = None
processes = []
p = mp.Process(target=test, args=(args, shared_model))
p.start()
processes.append(p)
time.sleep(0.1)
for rank in range(0, args.workers):
p = mp.Process(target=train, args=(
rank, args, shared_model, optimizer))
p.start()
processes.append(p)
time.sleep(0.1)
for p in processes:
time.sleep(0.1)
p.join()