diff --git a/Flight Delay Prediction/Flight_Delay_Predictions.ipynb b/Flight Delay Prediction/Flight_Delay_Predictions.ipynb new file mode 100644 index 000000000..c9ff7ddea --- /dev/null +++ b/Flight Delay Prediction/Flight_Delay_Predictions.ipynb @@ -0,0 +1,3459 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "nSxBf4--gC0n" + }, + "source": [ + "### Link to Dataset: [flights.csv](https://www.kaggle.com/usdot/flight-delays?select=flights.csv)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5ffM0ge7FcKp" + }, + "source": [ + "### Importing Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "B8VRPIqIp8_V" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import seaborn as sb\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.metrics import roc_auc_score" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZckrxAZjFiC0" + }, + "source": [ + "### Getting Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "bX5VWtiDnlR8", + "outputId": "4c728ed8-89ea-4357-b75e-fdf172ee0579" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YEARMONTHDAYDAY_OF_WEEKAIRLINEFLIGHT_NUMBERTAIL_NUMBERORIGIN_AIRPORTDESTINATION_AIRPORTSCHEDULED_DEPARTUREDEPARTURE_TIMEDEPARTURE_DELAYTAXI_OUTWHEELS_OFFSCHEDULED_TIMEELAPSED_TIMEAIR_TIMEDISTANCEWHEELS_ONTAXI_INSCHEDULED_ARRIVALARRIVAL_TIMEARRIVAL_DELAYDIVERTEDCANCELLEDCANCELLATION_REASONAIR_SYSTEM_DELAYSECURITY_DELAYAIRLINE_DELAYLATE_AIRCRAFT_DELAYWEATHER_DELAY
02015114AS98N407ASANCSEA52354.0-11.021.015.0205194.0169.01448404.04.0430408.0-22.00.00.0NaNNaNNaNNaNNaNNaN
12015114AA2336N3KUAALAXPBI102.0-8.012.014.0280279.0263.02330737.04.0750741.0-9.00.00.0NaNNaNNaNNaNNaNNaN
22015114US840N171USSFOCLT2018.0-2.016.034.0286293.0266.02296800.011.0806811.05.00.00.0NaNNaNNaNNaNNaNNaN
32015114AA258N3HYAALAXMIA2015.0-5.015.030.0285281.0258.02342748.08.0805756.0-9.00.00.0NaNNaNNaNNaNNaNNaN
42015114AS135N527ASSEAANC2524.0-1.011.035.0235215.0199.01448254.05.0320259.0-21.00.00.0NaNNaNNaNNaNNaNNaN
................................................................................................
1348282015195MQ3112N625MQDFWCRP14151409.0-6.015.01424.07786.067.03541531.04.015321535.03.00.00.0NaNNaNNaNNaNNaNNaN
1348292015195MQ3693N634MQDFWLIT14151414.0-1.028.01442.06876.044.03041526.04.015231530.07.00.00.0NaNNaNNaNNaNNaNNaN
1348302015195OO3446N227AGSEAONT14151408.0-7.014.01422.0149157.0139.09561641.04.016441645.01.00.00.0NaNNaNNaNNaNNaNNaN
1348312015195OO2580N465SWSANLAX14151411.0-4.017.01428.04550.025.01091453.08.015001501.01.00.00.0NaNNaNNaNNaNNaNNaN
1348322015195OO2708N907SWPSPPHX14151411.0-4.09.01420.06864.048.02611608.07.016NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", + "

134833 rows × 31 columns

\n", + "
" + ], + "text/plain": [ + " YEAR MONTH DAY ... AIRLINE_DELAY LATE_AIRCRAFT_DELAY WEATHER_DELAY\n", + "0 2015 1 1 ... NaN NaN NaN\n", + "1 2015 1 1 ... NaN NaN NaN\n", + "2 2015 1 1 ... NaN NaN NaN\n", + "3 2015 1 1 ... NaN NaN NaN\n", + "4 2015 1 1 ... NaN NaN NaN\n", + "... ... ... ... ... ... ... ...\n", + "134828 2015 1 9 ... NaN NaN NaN\n", + "134829 2015 1 9 ... NaN NaN NaN\n", + "134830 2015 1 9 ... NaN NaN NaN\n", + "134831 2015 1 9 ... NaN NaN NaN\n", + "134832 2015 1 9 ... NaN NaN NaN\n", + "\n", + "[134833 rows x 31 columns]" + ] + }, + "execution_count": 29, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "flights = pd.read_csv('/content/flights.csv')\n", + "flights" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5djkFMqsGh8x" + }, + "source": [ + "### Insight into the Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "R7O_ogZ8p7F7" + }, + "outputs": [], + "source": [ + "# selecting a section from the dataframe\n", + "flights_needed_data = flights[0:100000]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "cikjVPHFvEqT", + "outputId": "328386c4-d46c-481b-e160-a8550bf0f5b4" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YEARMONTHDAYDAY_OF_WEEKAIRLINEFLIGHT_NUMBERTAIL_NUMBERORIGIN_AIRPORTDESTINATION_AIRPORTSCHEDULED_DEPARTUREDEPARTURE_TIMEDEPARTURE_DELAYTAXI_OUTWHEELS_OFFSCHEDULED_TIMEELAPSED_TIMEAIR_TIMEDISTANCEWHEELS_ONTAXI_INSCHEDULED_ARRIVALARRIVAL_TIMEARRIVAL_DELAYDIVERTEDCANCELLEDCANCELLATION_REASONAIR_SYSTEM_DELAYSECURITY_DELAYAIRLINE_DELAYLATE_AIRCRAFT_DELAYWEATHER_DELAY
02015114AS98N407ASANCSEA52354.0-11.021.015.0205194.0169.01448404.04.0430408.0-22.00.00.0NaNNaNNaNNaNNaNNaN
12015114AA2336N3KUAALAXPBI102.0-8.012.014.0280279.0263.02330737.04.0750741.0-9.00.00.0NaNNaNNaNNaNNaNNaN
22015114US840N171USSFOCLT2018.0-2.016.034.0286293.0266.02296800.011.0806811.05.00.00.0NaNNaNNaNNaNNaNNaN
32015114AA258N3HYAALAXMIA2015.0-5.015.030.0285281.0258.02342748.08.0805756.0-9.00.00.0NaNNaNNaNNaNNaNNaN
42015114AS135N527ASSEAANC2524.0-1.011.035.0235215.0199.01448254.05.0320259.0-21.00.00.0NaNNaNNaNNaNNaNNaN
................................................................................................
999952015173EV4992N837ASATLBQK11081102.0-6.023.01125.07166.040.02381205.03.012191208.0-11.00.00.0NaNNaNNaNNaNNaNNaN
999962015173NK394N522NKLASPHL11081117.09.011.01128.0274267.0248.021761836.08.018421844.02.00.00.0NaNNaNNaNNaNNaNNaN
999972015173OO5606N582SWSFOBFL11081101.0-7.028.01129.07791.059.02381228.04.012251232.07.00.00.0NaNNaNNaNNaNNaNNaN
999982015173UA1135N38473ORDMCO11091116.07.026.01142.0165157.0123.010051445.08.014541453.0-1.00.00.0NaNNaNNaNNaNNaNNaN
999992015173AA74N4XLAAHOUDFW11091100.0-9.018.01118.07172.046.02471204.08.012201212.0-8.00.00.0NaNNaNNaNNaNNaNNaN
\n", + "

100000 rows × 31 columns

\n", + "
" + ], + "text/plain": [ + " YEAR MONTH DAY ... AIRLINE_DELAY LATE_AIRCRAFT_DELAY WEATHER_DELAY\n", + "0 2015 1 1 ... NaN NaN NaN\n", + "1 2015 1 1 ... NaN NaN NaN\n", + "2 2015 1 1 ... NaN NaN NaN\n", + "3 2015 1 1 ... NaN NaN NaN\n", + "4 2015 1 1 ... NaN NaN NaN\n", + "... ... ... ... ... ... ... ...\n", + "99995 2015 1 7 ... NaN NaN NaN\n", + "99996 2015 1 7 ... NaN NaN NaN\n", + "99997 2015 1 7 ... NaN NaN NaN\n", + "99998 2015 1 7 ... NaN NaN NaN\n", + "99999 2015 1 7 ... NaN NaN NaN\n", + "\n", + "[100000 rows x 31 columns]" + ] + }, + "execution_count": 31, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "flights_needed_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlm3Y2ePqnU6", + "outputId": "5074fb81-9db9-47d2-ee36-18a8bbf96828" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 100000 entries, 0 to 99999\n", + "Data columns (total 31 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 YEAR 100000 non-null int64 \n", + " 1 MONTH 100000 non-null int64 \n", + " 2 DAY 100000 non-null int64 \n", + " 3 DAY_OF_WEEK 100000 non-null int64 \n", + " 4 AIRLINE 100000 non-null object \n", + " 5 FLIGHT_NUMBER 100000 non-null int64 \n", + " 6 TAIL_NUMBER 99833 non-null object \n", + " 7 ORIGIN_AIRPORT 100000 non-null object \n", + " 8 DESTINATION_AIRPORT 100000 non-null object \n", + " 9 SCHEDULED_DEPARTURE 100000 non-null int64 \n", + " 10 DEPARTURE_TIME 97702 non-null float64\n", + " 11 DEPARTURE_DELAY 97702 non-null float64\n", + " 12 TAXI_OUT 97629 non-null float64\n", + " 13 WHEELS_OFF 97629 non-null float64\n", + " 14 SCHEDULED_TIME 100000 non-null int64 \n", + " 15 ELAPSED_TIME 97387 non-null float64\n", + " 16 AIR_TIME 97387 non-null float64\n", + " 17 DISTANCE 100000 non-null int64 \n", + " 18 WHEELS_ON 97560 non-null float64\n", + " 19 TAXI_IN 97560 non-null float64\n", + " 20 SCHEDULED_ARRIVAL 100000 non-null int64 \n", + " 21 ARRIVAL_TIME 97560 non-null float64\n", + " 22 ARRIVAL_DELAY 97387 non-null float64\n", + " 23 DIVERTED 100000 non-null float64\n", + " 24 CANCELLED 100000 non-null float64\n", + " 25 CANCELLATION_REASON 2389 non-null object \n", + " 26 AIR_SYSTEM_DELAY 34625 non-null float64\n", + " 27 SECURITY_DELAY 34625 non-null float64\n", + " 28 AIRLINE_DELAY 34625 non-null float64\n", + " 29 LATE_AIRCRAFT_DELAY 34625 non-null float64\n", + " 30 WEATHER_DELAY 34625 non-null float64\n", + "dtypes: float64(17), int64(9), object(5)\n", + "memory usage: 23.7+ MB\n" + ] + } + ], + "source": [ + "flights_needed_data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0gyL1I0vq2y2", + "outputId": "7b1bed43-e267-4248-c21b-a0ac21e1eaba" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DIVERTED\n", + "0.0 99776\n", + "1.0 224\n", + "dtype: int64" + ] + }, + "execution_count": 33, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "# no. of flights which were diverted\n", + "flights_needed_data.value_counts('DIVERTED')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "H3LsxmwUG46-" + }, + "source": [ + "### Data Visualisation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 458 + }, + "id": "I8tU0O_ArHtb", + "outputId": "5768bb85-23cb-474d-ea16-669d2805cc6d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAAGoCAYAAAAjPmDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeXhU5dn/P2f2fTLZQ0ICgQQhYREDLlVqwSq1KO7W9qdVsbRva6FqW7u4gdrWpfpKtba01qrd1NfWhbqjrVrrgsoWtoRAAiH7Mpl9O+f3x2SGmWQCSchKns91cYlnzvI8Z5jzPffz3Pf3kRRFQSAQCASC8YpqtBsgEAgEAsGxIIRMIBAIBOMaIWQCgUAgGNcIIRMIBALBuEYImUAgEAjGNZrRbsAwItIxBQLB8YQ02g0Yq4iITCAQCATjmuM5IhMIkggGg2zZsiVp29y5c9HpdKPUIoFAMBQIIRNMGLZs2cL1j7yAbdJUALoO7ePh78CCBQtGuWUCgeBYEEImmFDYJk0lY8qs0W6GQCAYQsQcmUAgEAjGNULIBAKBQDCuEUImEAgEgnGNmCMTCPogVZYjiExHgWCsIYRMMG4Z7nT6nlmOIDIdBYKxiBAywbhlJNLpB5rlOBK1auOxHm48tlkwfhBCJhjXjLV0+oGK62Ae8OOxHm48tlkwfhBCJhAMMQMR18E+4IdSwEcqWhprLx2C4wchZALBKDPaD/jjJVoSw5cTFyFkAoFg1MW0J4PJGD1eBFkwcISQCQSCJORImB07dvTaPpLRzWAzRseaIAtGBiFkAoEgCVfTAR6o9ZO9OxzfNhrRjRAlQX8RQiYQHOcMZu7IklMkREQwbhBCJhAc5wzH3NHxkFhxPPRBEEUImUAwARjqYbrjIbHieOiDIIoQMoHgOKNnpLFjxw6Qh/46x8Mc1vHQB4EQMsEYQQzzDB09I41DW/9D2rQTyRjldgkEw4UQMsGYQAzzDC2JkYbz0L5Rbo1AMLwIIROMGcQwj0AgGAxCyARjkrFQlCsQ9EQMgY9NhJAJxiRjpSh3tEn14Byu5A3B0RFD4GMTIWSCMYsoyk1t1TQWkzdSRdDHa6QihsDHHkLIBIIxTs8H51hM3ugZQYtIJYoYihwZhJAJBIIhYSAR9ESJ4MRQ5MgghExw3DAeHo4jVaw81plIEZwYihx+hJAJRoSRGGIZDw9HUax8mJGeAx3oS4RItBk/CCETjAgjNcQy1h+OIIqVR4uBvkSMl0QbgRAywQhyPA6xiAhrfDHQl4jxkGgjEEImmMAM1ZyaiLAEgtFFCJlgwjIe5tQE4wuRzDM6CCETTGhE0bVgKBFDzaODEDKBoJueQ43ibXpsMR7KK0AMNY8GQsgEw8J4HGLpOdQo3qbHFj2/n84D1Vx/1g5mzYqKxnj4NyYYHoSQCYaF8TrEkjjUmOptWkRto0vP7+eBV7b1+eIhvquJgxAywbBxPA6xDDRqEw/T4eVILx4iwp44CCETCAbI0aK2RMTDtH8Ml+AP5LsSjF+EkAkEw4x4mB4dIfiCY0EImeC4RQzrjS+E4AsGixAywXGLeMsXCCYGQsgExzXiLV/QX0QEP34RQpZAqmUbYGwWXY42YuVbwfGGiODHL0LIEki1bIPw30uNWPlWcDwiIvjxiRCyHhyPS40MBamcOmy54l4NNcfL8Nbx0o+jMVH6OdYRQibo1zDhWHDqmAgPjeNleOt46cfRmCj9HOsIIRP0e5hwtJ06JspD43gZ3jpe+nE0Jko/xzJCyI7CeHHcHgjjeZhQPDRGh4kQDQvGL0LIjsLxuPjiWBgmFIwvJko0LBifCCHrB0dafHEspqH3p02jPUwoGDpGKloS0bBgrCKErAddPX6gntZDaPx+2sym+Oc7dhy+bTt27OAXf3kDU0YuAN62Rn701S/G10gaDY7Wph07diT182h9HMwxQ71/qm0j/f9jtQ2NlR+y9iM3aXnbAGirqcQ+pQxU4t6PtTZE7/McBEOLpCjKaLdhWJAk6VUgcxCHZgKtQ9ycscxE6u9E6itMrP5OhL62KoqydLQbMRY5boVssEiStElRlIrRbsdIMZH6O5H6ChOrvxOpr4LeqEa7AQKBQCAQHAtCyAQCgUAwrhFC1pv1o92AEWYi9Xci9RUmVn8nUl8FPRBzZAKBQCAY14iITCAQCATjGiFkAoFAIBjXCCETCAQCwbhGCJlAIBAIxjXDKmSSJE2WJOltSZJ2SJJUKUnS6u7td0iSVC9J0ubuP+cmHPNjSZKqJUnaLUnSOQnbl3Zvq5Yk6UfD2W6BQCAQjB+GNWtRkqQ8IE9RlE8lSbICnwAXAJcBbkVR7u+x/yzgr8BCYBLwJlDa/fEe4IvAQeBj4ApFUZLXV0lg6dKlyquvvjrEPRIIBIJRQ+rvjsfp86/P/g+rabCiKA1AQ/ffXZIk7QTyj3DIcuBviqIEgH2SJFUTFTWAakVRagAkSfpb9759Cllr6/FuuyYQCASpmWjPvxGbI5MkaQpwIvBh96brJUnaKknSHyRJcnRvywcOJBx2sHtbX9sFAoFAMMEZESGTJMkCPAd8T1GULuBRYBowj2jE9sshus5KSZI2SZK0qaWlZShOKRAIBOOCifz8G3YhkyRJS1TE/qwoyt8BFEVpUhQloiiKDPyOw8OH9cDkhMMLurf1tT0JRVHWK4pSoShKRVZW1tB3RiAQCMYoE/n5N9xZixLwGLBTUZQHErbnJex2IbC9++8vAl+RJEkvSdJUoAT4iGhyR4kkSVMlSdIBX+neVyAQCAQTnOFeIfpzwJXANkmSNndv+wlwhSRJ8wAF2A98E0BRlEpJkp4hmsQRBr6jKEoEQJKk64HXADXwB0VRKoe57QKBQCAYBwx31uJ7pE6ZfPkIx9wN3J1i+8tHOk4gEAgEExPh7CEQCASCcY0QMoFAIBCMa4SQCQQCgWBcI4RMIBAIBOOa4c5aHFeEwzLbDzmp7/SRbtZh0qlJM2mZ7DCjUvXb5kwgEAwBsqywv81DU5efHJuBKRlH/h32Z/9wWKaywUlTl58Msx4ZhQyznkKHiboOb69jY/s3OP1MzTTS5YvQ7g2RZdHhDUZw+cNkWHRYDWpKsmxoNKr4dXY2duEOhAjLIMsyNoMWdzCC2x8m26pnVo4Vo1E7rPdwoiCErJtwWOYfm+u59YXt+EMyBq2K288rw27UsL/NwxnTs4WYCQQjhCwrvFrZyI3PbI7/Hh+4bB5Ly3JT/g77s384LPP8lnpuef7wb3zV4hKe3lTHdxeX8Ku3qqht88WPPWtGNi9uO8Qtz2+nNNvCFScX8Zt/V3PtaVOpaXHz0Maq+HnWnF9GXbuPJTNyAHi5soFOTxBPMMLfPq7j2tOm4g1Fko65c3k5y8pyhZgNAWJosZvKBmdcxAD8IZk1L1Uiy+DyRdjf5hnlFgoEE4f9bZ64KEH093jjM5v7/B32Z//KBmdcxGL7rHurimVz8rnl+e0sm5OfdOzWQ4f3v27RNNa8VMmyOfm0eYNxQYrtf/uLlYTCCpUNTiobnFQ3u2n1RPfr65hbX9jOtsau4bmBEwwhZN00OP3xf2Qx/CEZTzCMJxim2eUfpZYJBBOPpq7Uv8e+fof92b+v37gkHf5v4vbGhHP6AuH4PrJCn8+KRqefBqcfWTm835GOaeoK9O+GDBCPZ2K9eIuhxW7y7EYqiuxcdVoxvkAYk17DE+/XYNZFb1G21TDKLRQIJg45NgMGrSrp4W/Qqvr8HWZbU+9v1Kr5795WcmwGJqUZ4/vk2Q1cNL8Ao1bF7AI7P/nSDPLSTOTZDTQ4/Ri0KvK62+Aw6chNM/D9s0uZU2DHG4zEt180vwBJArUEuTY9GRY9EVkhLCsEQmFWLZlOvt2I2aBJ2b4cm374buIEYlgX1hxNKioqlE2bNvV7f7fPzxs7W/nfjXtYNicftQrmT04j3aKlyxfilKlZ8YlcgWAicKTkiYEmYgz0unXtHioPdbG7yYVGpaI4y4xOrWJaloWpmcnXkmWFd6ubaXQGuP3Fyvgc1M8vnE1BuoH6jgAGrQqbQU1DV5B1G/fw1YVFPPjmnvi+N5xVilmnoiDdTDAcIdOipzjbxMf7OpFlGYtBg0GjwR0M4w9FcJi0aNUSoUg0GtSqVUgSFKYbMGgkPEFwByK0uALkpxnQaVTsb/Oyp8mFrESFb2aejVOmOUgz9vslud83eObMmcrOnTsHeOfHPKOzsOZ4QZYV9rZ4+d+Ne7i8opB1bx2ekL39vDLsBg3/qWkRCR+jwHA+MAW9id3vNk+AQ51+bn5ua6/kCSCeWOEw6bi0ooDSbCsz82y9ROZI16lr99DUFcATDFOUbmZqphmAt3Y3UdPsxmrUsf6dmqTEjLtf3sHNS2cmJXHUtXtocvqxG7U8eNk8djZ2EZHhfzfu4WsnF/H4f/bT4Q3y84tmY9aq+fHSmXyvx3zaXz6qZeWiaXzrT5/Er3f3hbMpzjTS4Q3R5glR39HFQxurcJh0fOfMYiY5TGw+0ImswEtb6rn+CyUYtRL72vy0ukLc+kI0SeQH58zAG5SQZQUJeO6Tg3R4g9x94Wy8Af9AhKzf+Hw+PvjggyE/bypOPPFE9PrRjSxFRAbUtLjZ2+xm80Enj71X0yv8X7momNJsK7Mm2SjOsgxXkwU9GGjmmuDIHO2lIPF+rzi9OOVv4eVVZwBw7rp3cZh0XHlKUdKLX3++H1lWomLV4uGBNw5HRb+8dB7l+VZe3taILxSJi1hsGFCtgpOKHOxu6OKkonTmFqSh0aj4sKYNlz/E1npn/JjENq84vZhH3q5m1ZLprH+nhjuXl/OD/9ua1KbvfGF6yv4+ee1CgmGZj/a3s/6dGhwmHTcsmY5KrUqZ/Xj/JXMJhGWue3ITDpOOHy6dQaPTn5StuGpxCU99UEuHN8ifV5zMSVPS+/sV9vsfvTkjTzn1G2v7u/ugcR6q4VffXs4pp5wy7NdCRGRHps0TwGLUoFalnpCVFeIJH0LIRo6+MtFOWHWG+B4GSH9eChLvdywBIpFY8oTSnbhw0fyCuIjFPk/1/ciywr5WD7XtHsw6DUadiqomd68svpue3cxT1y7kbx/XccNZpXER6ymWa88vo/KQk0NOH+fMzAUUAmEZjSp53gqi0U9hupE8uwFZAYdJR6ZF12uurDDd2Ed/A6gkCY0quv9VpxaRbtFz/V8/65X9uOL0YlrcQVCU+P1JFLGe+z7ydjUt7uFJ9lDr9GQWlw/LucciYtIH0KlVeANhZubaMGiTb4lBq0IlgVmnEQkfI8xAM9cEfdOf9PSe9zvVbyHbaognYvQldrVtHmQ5OtIjywqvbG/ky796l2v/uIkfPreFmhYv6SZdymP94TD/8/np7Gv1YNCqUorlbS9W0uoJ0uwK8OauJn743FYMWhVl+VauOrWIx96r4eG3qvn9uzVcdWoRTm+QFadPxaZXc2lFAVVNLu5cXk5RhpErT4nuf6DDl7K/DpOWdJOWkhwLBq2KKRlm2jzBlG03alXYDBpsRi1FGUYWTkljSoa5z0xJg1aFSafu93co6BsRkQHeYASbUcs9r+zk1mWzuHPDjqQ5sjSjBpNezZQM82g3dUIx0Mw1Qd8c6aUgFj0l3u/nPjnIqsUlvYYNY7+BBy6bx+7GrpTfj6LAf6pbObU4g9p2Lzc9uzkeKRU6opmD+Q49D19xIp5AmFZPgD99UIdOE418Djl9aFQqHrxsHntb3H2Oktz32m5WLipm2Zx89jS5MevU+EIRrjujGIhGYw9trOL6L0zn4Td389jXK2h1B3ns3Rq+s7iEm84+gR/+35Y++3vXBeU0d/kocJj5xSs7WXt+GWFZwaRLnYE4M89GmklDfWeAO86fRZMrSH2HN+W+KglWLynBoh+eR3Ao4KN224fDcu4YJqOJrsZ9wOxhvU5/EEJG9Af8aW0bly8o4uG3o2G/WgUnTk4j3axFo1YxM9cu5mVGmCkZZh64bF6v4TDxQjFw+vNSkHi/G5x+nt5Ux/orK9CqpV5zakvLcsm16cl3mLithxvO/765hz3Nbu65eA7pZm3KubQ155fx7KY6Ti7OQq2C28+bhc2g5kC7LynB45Gvzu9TLGOCJnWPmKjVUq/kkKc+qMUflqN1XoEIUzJMXL6wEJ1aoqrJEz9vg9PPUx/UsuL0YqZkmDjQ4cUfipBn09HYFaC2zYc3GCbPbqC2zcNdF8zmlue3JV1r7YZK7rtkLm5/kGyrkdte+AyHSddLIG9dNossix5/OII/FB6eLzwSJtzZNDznBtyt9ay4eBHlFy3nxBNPHLbr9BchZER/wAc7fPzpgxrWLi+n0xsizaTlzx/s46pTizltmkOI2CigUkksLcvlhFVn0Ozyk20VWYuDpT8vBQO53yqVhEYl8Uj3i58kgaLAb/5dzbI5+Wyt7+Lm57by5DULubSi9/Dgr/9VzcpF05JGPx792nxu606fj+23dkMldy4vT7KOiwlULLJJN2kpzbFw9R8/7jUXtXJRMRE5Kn4Wg5p2T4g7N+zgD1dXMLcgLUkkG5x+Hnuvhnsvmcu6jdUYtCr+vOJkgu5o+v6/d7cwK9/GpDQTtW2epH4/9UEtDU4/nb4Q2VYjh5w+/CE5SSAlKVrSs2ZDJb+4aA5GWSKiDM+/Za3JyrQzzh+WcwO01mynvLx8pJI8jooQMqI/ytOKM+jwBPnmU4fTb++5eA6nTM0QD85RRKWSKM6yiOSOY6S/IjWQ+93qDlLb5uORt6uTtscSLWJuF1Mze88TLZuTHxex2L6fHejstV9tmw+bQcNv/t9JtLoD1LV74xl/P1p6AplWPRpJotkdSDkEWZhu4ldvVbF6SQlalYoPDrTiD8kc7PDj8oV6RUurFpdwqNMbP94dDPOLV3ayanEJhekm7n1lF9eePo1Mq4F7XtvdK1K0G7S0eYJJw48NTj+PvB0Vxvsvmcu3z5zOgXYPWVYDWRbhszgUCCHrRqNRcd7cScwusIu3f8FxyVC/FJj1qeeKYhU9Bq2KwnQzWqev136pMoRlhZTnq2n1YNFrCEdk5hc6OCHXRpsrwK//vZc7zi8jGJZJM2pTHptl1fOVBYVMSjPQ6g7Er2HUqqnv8PL85vqkyOrpTXVxz8Xo+SLUtvl46oNabl56AptqnVx3Bhzs9KYUweizQ899r+3i9mVlrNlwuEB77fJy8ux6djYEsJv0BCMyJ+TahuS7mOgIIUtAvP0LBP0nx6Zn9ZKSpBqp1UtKePK/tfERjamZ5nhiQ+J+PYf1IFpU/LMLZ/OTfxyee1p7fjmeQIhf/2svHd4gj329gt/8q5qt9dFEE5NWjaIo1LV5uOuC8qTarjuXl3OgzcO8yWk8/p+9rDhjOi9t2cWqxSU88X4NV546hW8umsbahOHNxPbfubycXJseg1ZFg9OPWiVh0KrY3+ahJNvK2g2VvUTwzuXlHGj3cPmCIp7+uJZ7L5mLPxgm32FEp4lGscGIQkGagdn5acPmFnSkZA+T0YR0jC/ozkM1jIUkjxiiIFogEAyKWGFzVZObLIs+XhPlC0WoKErntOIMNBpVfL8mpx+bUYtOrea5T2v5/IzcpDmyBy6bxxemZ/LxgQ5a3UHSzTr2NHbx+PvRocQ7l5fz8NuHl1q564JyJtn1tLgCyEioJQWzXseWg51EZNiwtZ6vLiziLx/V8p0vlDAty0BNi5+H34460pdmGSnIsOD0hdh8oBOdWoVOLZFjN5Jt1eEPR5iRY2Bngx9fUEZGIRxReGjjHm46u5RgWOklnJlWLU5vGKNWwmbU0+wKxOfbv1Sezyvb6zmnPJ/lcyYNRsT6rT5Ge4ZSfv7KXtvdrfXcdPEiysuPvcZsFBw9+uy/EDKBYJzSH6eOwdp79ffYmNVUiytApy+EzaAlx6anMD15/9gCla3uAHajlrCsEIpE0KjUNLsC5Nj0zC9wAPDP7Q38+B/b4vZX0zItZNl0tLr9aNUazDo1NoOWWbk2VCqJN3c1odeC3aAnJMsEQwreYJh0s46wLNPlD5Nl0WM3qsiwGqhu8tDuCZFujs5P+cNhzFotrkC4uxRHg1GjptMfxG7QsLfFFxe/PJuOOZPTkIBAWKHVHcCkU2PSqfGHw6BAplVHl0+mxRUg06LHHwpjN2rxBENY9DrK8uyDjcT6LWS2vCnKuWv+2mt7a8127rpg9phJ0hggwtlDIDieOJpTx7HYew302B0Nrl77FqYfzoYMh2Xer2ljU2173Jfw2tOmolZLNLui81Y1LW6c3hAGnTouYt9aVEybN0hVi5uaVsgw63j033vo8Ab5wTkzaPUEmJ5lodMTwGTQIhGiwRlgzUuVlGZbWH1WCb6gjCcQZl+Lh6lZZuo6/IQjoFVLtLqDOMwanN4Iu7s83NedvBEbYixwGDBoNDz8dhXf+fw08tIMSJKKFlcApy+cNAQa3d/IpDQtWw+4ue3F7QnDo2VYDGpMOg1WvVqYjw8DIiITCMYhNS1uzl33bkovxOIsy1E/7wtZVthW38nGXc3ISrSoOLasSapj9za7+fKvel/nn989g2nZFmRZ4aWth5LMh1ctLiHTosUfkmn1BONu8BlmHRaDlhuf2cLNS2cAxOfVijKM/GjpTDzBMPvbvN0mvdNQqdR4/CEAZk6y4fKF0GrUeAJhOrwh1rx0ONnirgvKKck2Ud3sY91be/jJuSdgN2oJheHjbpFN7O/9l8wFCdrdAewmLd5gdLHd759dyv2v7+nV55WLijl9WiZXPf5Rb8/GaxaiVkkEIzKnTssc5Lc+gKHF9Bxl3td+3Gu7u3E/q88pH5KhxcFyDEOSIiITCMYD/R3SO5pTR3+cPHoSDsv8c3tDL9GJ1UglHhvzT9zV2MV1ZxTHBSDmXbizoQt3IIxZp46fL9aGdW9V8cS1C/i0tjOpgHn1khJKcq0YtCoKHCZ+0O26kWc3cHlFITckRH2rFpeQYdHzt49q+fppxdS1edjd6MIbjPDAG3t6mR77QzK3PL+dx76+gJ8+v401y2aSbTWwp8mdtPRLYn/94QiTHSby7Ho8gQh7Wzr4wdkzyHek9mWUFWhypb7vTa7o/KDLP0wF0D3poyDaYDDyl11BVNXbRqYdPYiaDDPkQ5tCyASCMcJAhvSO5tTR8/M8u4FLKwrwBiPUtLh7rS1W1+5hX5s3pejERCF27lTtXLW4hFe3N7C0PC8pJf2ei+f0erA7TDoCIbmXme5DG6v44zULuPfiOZh1ar53Vgn5aSZUEtz07JZe7Xr86gVc87lpKCg0dAUwatXxZVYK+xCb+g4vpdkWNFoNLn84LmKp+jslw0REkdnb7E8aKrz9vDKKMozUtvmS7r1K6vt7ybIacHpDZFtHJjliuAuixxpisFYgGCP0x9g3RsypI2Z029OpI/HzPLuBq04tYv07NVz7x02cu+5dXq1sRJaVeEbh9vouqhq7WHF6Mdcvns71i6czJ9/GitOLKUw38ujX5lNgNwLRYc2e7Vz3VhXXLZrWy8GjpsWdZMYba0uj0x9d1+sL0+PXc5h0eLsXrlyzoRKjRk1Vswu3P8x1ZxSTZz9sp+UPybj8Yfzh6H9lBbKs+rgd1iFnahNgq0HL6rNKqG3z0OkNJQlOnt0Q7++Dl8+jzRNCUaS4iMU+b3D6uPuC2RRlGOPnXb2khNIcK55gkLXnlyV9L2vPL+PNynoyLFrKckVpz3AgIjKBYIwwkOHAozl1JH7e4grw9YR5m5hAzvjuGahVUNXkRi2B2aDlzx9FC4LtBjVXnTYlKb38novn8KVZuVQ2dKVsp4TSa/szmw7G67scJh0/PXcm3/+/Lfxo6QyuOrWoVw2aWafh2y9+xs3nzMCbsCaZQRtdxVlWFDzBCGoJHGYNobCMTq1BLUGOVR+3wzp1anqvurK155cTCIVo9yqsf6eG+y6Zm7ScS08/yGgCh6nPz+84rwyjVoVKpeJghxedWoXLH6Ghw82T1yykyeUny2rgzcp6yvLTKckxYzaOTEQ2VKbBQ1Fzlshw1Z8JIRMIxggDdfs/WgF/7PO+BHJnYxd5NgMPbazivkvmcv/ru+IrpK84vZgH3tyeJH43P7eV/DRjPMpK1c6e2zu8QYoyTPz6qyfS0BVgT7Mrav0UiPDw29W9hhbXfWUeDpOOokwz3/7zp0mfP/jmHlYuKubht6rjS6pMchjwByMUZ5kJyjKTHSYcJh1nleXyq7cOG4CfkGvjD+/tZdWSUn7UbUP3u3f2sub8Mm5/sTLlcjEPbaziyWsX9rmczB0vVcbXFTNoVfzh6gVMMuhJN+no9IfIshro8oWYmmWjJNuMfRhWgu6TITANjhsDD2liyOxhMRkWQiYQjBGGy+2/L4Hc0+TCYYpmD+5r9bBsTn78Yd3XWmONXX6e2dR7yZO155fhDab2LuzyhdCoVdy5YQfXnVEcbUu3I33P8xu00TXDWl2pvRO7lznDH5L58T+2sf7Kk3D5owkedy4vp80d4NKKgnihdcwH0qCNrhTd5QvHz7u1vosbbHoev3oBre7Ua4xF5Ah3LS+nrsObOgrtXlds7fJyJGT0Gg0hWWF7vTNelL1qcSkn5NoH/wUOgqGYIxtrxsBHQgiZQDBGGC63/ykZ5l7WT7HsvBMnR62ighG5l/9hKvHLsxno8AaTHN1VEkxON6IQtWnqadv0y0vnsb8tumRKbN2vQDiS8vwWnYapmWYOdfb2Z0z0cYRoWzs8IWJ+iDsausixG4jIvYc4/aFo/xzmZE/GbQe7mJppRquWUl5PrVKTl2bAoFOn/HzhFAeLShZi0qro8gfRa9WkGTQsKErHEwzzxZnZlE8adAG0oJ+IuysQjCFiw4GnFGdSnGUZEtNqlUpifmEaKxdFEzlWnF4cd5AvTI9GgS9tqU9aIT0mOD2TSWZPsnPXBeV0eIM88nZ0FeYCh4k8u5ECh5HvfKEkvkLzY+/V8N3FJZTn2piUZox7FkaXYFFz67JZPZIiypFUMlkWPc9sOsANZ5Umfb56SQl///RgvF8GrQqdRoXZEDUvfuL9WkKhCHl2Q8pEj7kFaTzxfg13Xzg7/nlEltGqJeraPNz4xeTr3fjFUkw6NaruWrLVS5Lvx5rzy1AUheGqVmAAACAASURBVJpmF96QjDekUJBm4cSidM4ozWJpeR7zCh1CxEYAURAtEEwAjpTaD9GMSacvyL5WbzxyK8owcsf55aAoFKabowbAKiluN9XUFSDdrENBIcOsZ0qGGVlWqGxw0uj0k2s3xO2YfL4QL+9o4qcJi1Hec/FscmwGmrqiFlU6DZTnOtjX7qLykJuHNu5h2Zx81Co4qchBuyfIj/9++PhfXDQbq0FDly+IPwxrXqrk1Knp/M8XplHX7uvlg5hn19HiCvHnD/ez+qxSfEGZLIuOFk+QQCiCosikmfRx+6qIImM3aAjJ0NwVoKHTR16aCV8wHC0hiETwhyIYtRrK821Mdgz7ahnHXBA9EHoWT4+Ct2JPhNeiQDDeGYx3YuIxeXYDERla3L2HLWM2UlsPdlKcZSYiK1Q1u3l200E6vEF+duFs5hemxT0UUwnjLy+dy5QME+5ABE8wTFG3+MmywsZdTdS2eSjKtKBTSwTCMjajBrUkoVLB7gYXuWlGTp+ayXs1rQAEIwpmnZo0k5aDHT7ufW1XXNjmFzrItWtpd4cw6zVo1SpCYYWqFnc8Q/LSigIK0000Ov08+8kBvru4hIVTrXS4FXzhSNQeKxJhaqYZm1HNJ3XupFWf71xejlWv4eev7uQrCwopSjehUklY9BrUKgm1Gix6DaVZtpGKuo7ZNHigWHMmo9JouwuZl4/2fJlw9hAIxjOD8U7s7zGyrPDPbQ3c/PfDjh6rl5Twr13NXDS/AEmC2jYPrS4/Belmzp6ZQ2WDM6mWzGHS0da98GViSv0vL53HpDQ9Na0e/vZxHV9dWMSDb+6Jf37jF0spSDNSmmvh9+/W4DBpafcEue3FShwmHdecVkRprg1fKMJlFZP50wd1cQupX39tPjk2LQc7Aji9IQ52+lj/Tg0Ok46L5hegUakwaNVMdhg5b24+r1ceQqcpwBeMEApHsBq1pJl1yEC9M0Rdu4frzigGokOrt76wnRvPKuHyisKkPt26bBbr39nL6iWllGYPzfDvUCMKogWCIUKWFWpa3Px3bys1LW5keXxG/2OhHwMplh7oMftaPXERi+330MYqbji7FHXCEyLDqucP7+3ln9sb2LirOSnx4aL5BbR6gr3cOm56djPuQISHNlZx6UmT4yIW+/yBN/ZQ2+7FG1T4xqJphCNKXMS+taiYiAK3v7idfa1eAmGZ28+bxZx8G/6QzOYDnXgCCqGwwjOb6phXkMb3zirh+sXTeey9Gh54Yw/ff3YLwYhCrlXHFSdPobrZza//VU1umokmpx9PQKbTG6a2zcv6d6Jze79/t4YrTynCYdKRl2bqlXZ/54YdLJuTz0/+sY0WT5C69r6/A8HIICIywbBwLO7rY4mx0o/BeCf295hDTm880xAOG+e2uYO9vBC/sWg6q//22eE0+u5i4UKHkQOdvpTXc/ujKe9ZFn3885gnoyRB2SQbWrUESLR7omnwF80voM0b5IXN9fHatsSIyPnOXoxaNQ2dfkx6NRfPL2TNhkp+cu4sKg85e0VWD142D3e3A8iyOfkcaPMwLdtCbZuXSXZjPF0/1uZ1b1WxclFxt9NI6rR7f0jms7oOTFo1UzLHlmPHUBVEx3A37mf79uH/9z7YeTghZIJhoa9o4ISjuK+PNcZKP2K1YLFhM0mKOsbn2vousu2P3yJAiysYN9iNpeY/vamOunZvUr8f2ljFr786P55G//2zZ/DUB/u5vKKQQ04fail1yn62NbrKskmvifchlYtGYbqJNFM0PV6SiItOqojo4a/Op6rJBUSwGwzc9c8dXHvaVFrdgSTxjZUZ7GzsojTbikWnJt9hoDDdhCcQId9hwh+KpBSr6VmWeHtSlQEYtCoiMniDI2QEPBCGoCA6kZEwGz4WQ2EhZIJhYTARxFhkrPRjSoaZh796IlVN7qT5muIsCy3uQDxrMDFKjBVY3/PqTi49aTK5dgMH2r389B/b6fAGeeCyeczIscazFGN9W/dWFb/+2nx++o/tvfodiMjxFPRcu567ls/m49p27AYt07PN3HVBOQfavTzTnSTy8wtno9dJ/Ppr85EVhdVLSvCFIildNFYvKSHTksbdF86mzeVnksPEniZXyvvvC4Ypz7cSliWaXH6WzcmnzXs4ggQozbZQmG7iJ+fOJNOio8sX4MRCGzq1hqpmD7c8v50VpxejUaUWYLNejdWg6WV1FRP62H8vOjF/6L/wY2SizZEJIRMMCwO1WxqrjJV+qFQSUzMsXP+Xz5IE4Obntsbd2nsOeapUEmfPzCEUkVMuzXLjM5v59dfmpxSKQEimwxtM2m7QqjB1R09qCQ60+/j+xsPn/cmXTqDLH0YBfnZhOc1OH1Myjexq8HDL89HFMm84azpmvSnlNbOsekKRCFMzjCiKwh//U8PqJTNS3n+TTkMgpNDo9FKSa6Oq2Y2sHC7onpNv44qTi/h+91IwBq2Key+Zw4GOAHXtHXHBkyRSOpXcumwWoYiCJxgi06Lj8asX4PJHMyQr650sm5PP05vquHnpTKZmHpvziuDYEckegmHhaO7s44Wx1I/mPta6is3XpErkqOtIvTTLRfML8IdkzN3DfYkYtCr2t3l6FUTfdUE5gbDCRzVtzJxkT0rscJh0eIJR/8R1G6v5nz9/ShiJUJh4Snt0TbMgSvf5el6zrt2LRq2huSvIr96qYvEJudzywjbuXF6e1I5Vi0tYuyG6/EphhpkOT4B5k9PiQ5sA3/r8tPiimrF+13dEa8sSBQ9Iciq5fvF0Vi4qxuMPkWXRE4rIGLUaWt1BzHoNbW4/J+TZWDgljcevXjju5nyPV0REJhgWhstuaaQZS/3oKzpUEvwHew559jU0GvMIzLHqe/k73rpsFg+/FfUoTLSbcnpDGLRqLj5pcq/zXjS/oFfG4p0bdvDgZfOS9vOHZQ52eLl12ax4gkVilDjZYaLB6U+aG9OppaR2xBa+9ATDRBQFlSThMKsoybGyekkJD22sIhjpbVOVbtLFt8Xu43OfHOSGs0p58M09cfPf1UtKyE0zolGDx69wx4tb4vVrJ052UJiho9BhH9P/lvtK9hhqN/uh5Fic8YWQCYaNo7mzjxfGSj9SmQrHBABSD3n2JX4qCR64bB6F6WYK081Yr6rgw33tKAq4/CE6vNHswUTT3ZWLomKSZdXT1OVPOm9fJsOWbvuoxM98wQgqYOWiYmTlsDh1eIMYtGoicrLvo0qlSlrtOdYes06Dw6zlwTd2c9WpU9GpJWbmWll/5Ulo1ape141ZWSWKV4PTz18+quXR/zefQEjGpFNj0qmRFZnGrgDzimz88tJ5NHb5ybboyU3TU5A2Dl7IUiR7DI+b/VAyeGd8IWQCwTghMTps6vITiijc+sK2eIFwqiHPVOLX06UDwGbQ8vt3a+Lp9D3njKJrhamZ5DCSZTFw/+u742LgD8l9Ziw6jFrWLi/ntheiyRIvbanne2eV4vKFiCgkJa7ccFYpT7xfw1WnTU0Sot+9s5fbzyuLDxUatNFVmr3BELl2PVecPIU2T4BASOZ/N1bx+NUVhOVIr2PsBk08Yvvj+/tZvaSEogwzNoMGg1ZNKBJEq1ahoKBXq8i16ZlkM1OQNv5exFIle4wnN/uBIiyqBIJxSsx+6mhDnrKssK/VQ127B5NOQ45NnyRisqxQ2+ZhU20Ht3YLTlGGkbsvnA0KuAJhMs06sm16JjvMhMMy/6lpZX9rtBbL6QuRZzdQ1+5Lctj/+YVz+NKsHHY0deIPQZc/hNWgweUPk2bUIKkkAiGZZlcgbiP1g3NOwGHSYNSq2d8WPZ/DpOMbZ0xlUpoRo1aNViNR0+zGYdZT4NCjKCq8oTBt7iANTj/VTU6WzMpDrZLQqVV0eEI4zFpUKgWXL8LORhcmnYbSbAtrNlRS2+brbu9sJqcb2dPQgcVo5NzyvLFm+NvvMNCWN0U5d81fk7a11mznrgtmj2chE16LgqFnMN5/x3LcUJ9jOBgr7Yq1o80TwKhVs6fJnSQyiYbBsYLvREsobyCMQatOetD/8tJ5nDMrh9d3NnHPqzvj80Zz8u14gyGyrEbaPEHsBg37Wj089p99fHdxCbl2HWadmobOILuaXMhKtAZuWraFgjQjKNDqCWAzajHqJPY2+/jLh/u56tQpNDr9mA3apPm0uy4opyTbgk6tUNkQTaO/oiKfL5ZPosMTJNuqR6WChs7oQp6x652Qa2VSmh5ZkWh1BUkzawmFZbr8YdLNOvQaiUferuLLswv48uwxJ2JwjKbBPU2AR5ohMB0WXouCoWWwjhdD4ZQxVtw2xmq7Yu2459WdXF5RSOx5fN8lc/EGwrR6Atzz6k5OyLUCxNubZdFRkG7m07oOZAVe2lLPykXTePqjOrbWd3HTs5sp+MYp8fPGhh4riuxcWlHINX/8ON7vO84rw27Qcsvz2/nLioWEZaht9/ZyCjFo1HiDEbJtOlAitHskHtq4h19cNJtr/ripe6Xq5CSSW57fzuNXV+BFiotYWb6Da7uvX5Rh5J6L5tDuCSTdlxZX1GXfFQjj9IfYfsgZr3dbc34ZhelGLjyxkBue2czsAvuoz4keEynmyEaiqLkvjqXYuT8IIRMMisE6XgyFU8ZYcdsYjXb1J+KLtWPF6cXRwt0lJTR3BfhBQk3VDWeV0u4JEOrO7suzG7h8YWGvRJL17+zllnNncduLlTQ4/RzqziiMLaCZY9NRmmPj6sc/Sur3HS9V8tDl87jjpR3UtHkxaNS9shof2ljF/ZfM5XtPb47P3XkDYb79+Wk4u1dy7iuJpNUdjLuEfGl2Pld1Xz/PbuDyikK6/GE8wUgv4fSHZL751Ce9kmVuf7GS3155EhFFGZeF+z2ZaAXRYy52FowPjuR4MRzHDfU5hoPhblc4LPPS1kOcu+5drvjdh5y77l1erWzsZWIca4ckwYrPTSXLoifdrOO+S+bGDXcffHMPWrUqXkd20fyCJL/BmCvGDWfNwGxQc8NZ0zFoVVj0GuwGNZdXFPJhTQtalZqmLl+8Buv6xdPJsxvwh2SCEZmrTi3ilue34wmk9iz0hyPxv//kH9uYnmOh3ukn3axLqh1LxKBVYdCoyTDruerUItq6/RkhWgaw7q0qNCoppXD6Q3KfNXWeQJj07hWkx1vh/kRHRGSCQTFYx4uhcMoYK24bPRnOdsmywvs1bb2Km1NFfLF2ZFt16DVqViZEIGvPL8cbDPHbd/bR7gliM2i5ddksOhLEYE6+jSsWJrti3H3BbB6+Yi5mvZqZk+x848lN3HvJXH75+i6u714VOjHKeXpTHWlGHVp19H60egKpbaB0GvLsBhqcUfFt94Qw6aIp+Ld8eSayrHD3hbP5acL83uolJTQ4fTjMWsomWdEkZDjGIrhEcYsR295zW6ymrrbNi81g5+cXzh53hfs9GWrT4GMl1NHIYGvE+oOIyASD4miOF30tfTIUThljyW1jpNq1v83Dptr2lA/nPU2upHtc6DDx8wtnk59m5PYXD7tbOEw6DnZ6Meqi/oEuf5BmVwAVCjPzbPF2X7doGms2JLti/PT5bahVGgxa4o7wvkCYZXPy45mOsX3XvVXFHeeV8dQHNXHT3de2N3LXBckOHbcum8WBdg+/vHQOv73yJCqK7Fj1GoozLQTCMlq1ip+9sguLXsPKRdGIb8XpxTz531p+9souvMEIDpMeg0bdnUpvZEaOlVVLpmM1pHYsaXUHem1TSbD2/DKe/G8tnmCEL5fnjYnEoWOie45sLPzprP6Ub505fdA1Yv1hWCMySZImA08COYACrFcU5SFJktKBp4EpwH7gMkVROiRJkoCHgHMBL3C1oiifdp/r68At3ae+S1GUJ4az7YIjcyTHi6MlPRyrU8axnmO4Mgtj7Zq1+gyaugLxVZKPtR2x/WQlda1WKKJwzR8/4ualMzl7ZjSrMCJHcAek+L55dkMvx/m7LpiNTh2hIN3MQ2/u5vZlZazZUImvj2HAzw50cGZpFnqNOu5mn1i4nLhv5aEu5k3OIBKR+dmF5XR4Q7h8IVacXoxeo2J6toV7Xt0Zz4hcvaSEK0+dgkoVHW50mAzc/uKn+EMynZ4g6zZW97ovnmAEgzZCiyvAK9saWLloWnwesCjDyB3nlXFHQh3ZXReUo9ccjt4MWhV3XlBOvl3PL17ZTYc3SHGmGZ1OPaDvfSwylubIYvVrx5ixeESGe2gxDNykKMqnkiRZgU8kSXoDuBrYqCjKLyRJ+hHwI+Bm4EtASfefk4FHgZO7he92oIKoIH4iSdKLiqJ0DHP7BUegL8eLoyU9DIVTxmDPMRKZhTsaXP1albm/qze/WtnI7sYuXtpS36tQedXiEu5/fReXVxRyz6s7yU8zcOMzm/ntlSfxaW1H/KEdmztKzv7bxuNXL+CT2g5OLs7iN+9U8+Bl87D3sXRJRAZ3IAwo3Lm8nCfer+HbZ5ak3NcXknnsvRoev3oBEnDfa7u575K53PPablacXtzr38dDG6Prf01Oy6K+w4VGdficfQ1LSkq0Ni3drOXME7KT5vhq23w8+u9qnrxmIS3uAFlWPXajCq1K4vGrF9DsCpBp0bGvxc1Nz+6hwxvk3ovnMG0cJ3hMZIZ1aFFRlIZYRKUoigvYCeQDy4FYRPUEcEH335cDTypRPgDSJEnKA84B3lAUpb1bvN4Alg5n2wWDZ6wmY8DgVloejvMPdL9nNh3k8opCnt5Ux72XzGXVkugw21Mf1FLb5mPdW1Usm5Mfn2tq6grEXd0NWtURsv8C+MNRS6jaNh9rN+wAReauC2b3MurdsLUebzCCLyjT4Qlw2vQsdFqp15DhqsUl/P3Tg/hDMi5/GINWgz8kU9/pZdXikj6jOFkBVzDMQxursCaYGf/pgzpuOKs06Rp3nFfG/nYPZp2GqiY3hem9HfVr23zUd/oAsOrVHHIGUKnAqFWTbtbhD0UozbXx3cXTWX9lBeceD0OKE5QRS/aQJGkKcCLwIZCjKEpD90eNRIceISpyBxIOO9i9ra/tPa+xElgJUFhYOHSNFwyIsZqMAcO/vlh/zz/Q/Rqcfp76oJaL5hfgC4R7DbX5Q1ExyrNH771Rq05ydZ+RY035neRYo3ZTP1o6E4NWRYPTz6ZaJ/tbXDz6tfl8dqCTiAxPb6rj22dOJ9uqp7rZzePv13LlKUVsP9hFcbaF+y+Zy55mFxH5sKlvNMtRTVhWMGhVuAMRXtpSz/fPPqFP/8fYIpcRRY7bScX8EB+4bB41LW6mZVl49F/VOP0hpmaaaXYHMQbCKc+ZazcQkSNsP+RkRq6NgjQbiuIlEIkAarp8IRZOSY+PFIxnEp9/WpOV2m0fjgmT4GMxA+4vIyJkkiRZgOeA7ymK0iVJh2+soiiKJElDYi+iKMp6YD1EnT2G4pyCgZPK328sJGPA8Itsf88/mP0anH4eebua1Uumpzy2oiidsjw7D1w2jz+8tzc+5/XI29UUZRiTPA8NWhV3Li9ndp6N7y4u4bH39sYd6YMRmZcrm6hu8XDdomn4gmF+cPYJZNt0ZFp1uPyGuEiuPGMqJq2Kxk4fRq06yTvx9vPKMGrVRLoX1Pzbx3VcXlHI/a/vSvJpjM2R5TuM5Nmiq0nvanSRZowmeWhUKmblWYnICsGIzNoNO+jwBrn7gtlkmvWoJXhm04Few64/u3A2VoOGJ9+vY8HULEoyLGg0KqZmWZh6HA4hJj7/jPYMpbP60zFiEjx4M+D+MuwWVZIkaYENwGuKojzQvW03cKaiKA3dQ4f/UhRlhiRJv+3++18T94v9URTlm93bk/ZLhbCoGl366wM40oTDMu/XtLGptj3uXnHz0plDNkc20LmvnvudPTOHug5vPAGk0GHi9Z1NSfs9/NUTCYaVpG33XDyHL3d7A4bDMpUNTjq9QYw6Da3uAFkWPTajmg5vmHZPkHy7kbJJdjQaFX5/mG0NTlrcATIterp8Ibr84SRLq59dOJuTCu3kp5n59GAbB9sD8c8vOymPz8/Ipb7DS16aCV8wjMOkQ0bh1GIHW+udtHvC1Hf4KEw3YTNoqW52kZ9mIijLWA0aTDo1OpWMWq2mqsnLnz/czzcXTcfpj/o4atUqfKEwRo2Gpu5/UwatQo5Vw6d1Xmrbvfzt47q4bda8yWkUpeupbvGRadYzK8eK0ag95u93lBmQ1+LCr/90vHsr9mR0vBa7sxCfANoVRflewvb7gLaEZI90RVF+KEnSl4HriWYtngysUxRlYXeyxyfA/O5TfAqcpChKe1/XFkIm6Ekq8UgUgKG8Tn/NfBP3SyVaieKWuN/BTi9NXQG8wTCF6WamZiZnjPa0kYp5JZZNstLgPJwlKcsKr1Q2xFdYVkvRdbv+s7eZr59WTFNXgAyLjppmN3lpRoxaFVqNhC8oEwgr2AwaOrwh7n99F19ZUMhkhwmVCnKsBto9Hsx6PTajBl9QodUTxKRVY9Sr8PojGHRqQmEFTzCMw6RFq5aoa/fx8rZ6zinL56fPb6M028L/nDmdvS1uTsi1UtPipisQQS3BzDwbRRl6qpp9eP0h8hwmPIEwmRY9/61qItdhIc2k5YziDExG3ZB9v6OIELI+GO6hxc8BVwLbJEna3L3tJ8AvgGckSVoB1AKXdX/2MlERqyaafn8NgKIo7ZIk3Ql83L3f2iOJmECQilQJFjc/t5XZ+UPrq9ffjMqe+9W0uFMmgLzcne1ZnGVJiihNOjWKAp5A1B1jaqY5yZ6qZ5biTc9uZuWiYtZtrI6L+PRsMwc7fHErp6IMI7ctm8VZ+kmseGJTUnbkz1/Zyc1LT8DjisRrxwxaFTd+sZTiDDM2ozapiPrO5eVMydSxrT7ZsPgH58xgaqYJly/qeZjdvb5ZltXAg2/u4adfmsWqpz/DYdJx+cKo9+Hhgu4yijJ1/O6dagxaNZkWHT/8v629hlnvvWQuP/y/LaxcVIxVr+WU4owxMSIwUoQCPpr2VrJ9+/jq82CNhYdVyBRFeY++VXRJiv0V4Dt9nOsPwB+GrnWCkWa0nOFj193T5Op3osextHWwxx4pAaTAbmTbISeHnD603Wtl6TRqDrR7ufvlnXR4gzxw2TwcJm2Sw0XPc8kJq0nf/NxW1l9ZEZ/XivkUbjnojAtbbN91b1Wx4vRiVEi9CqAfeGMPv7uqgm88uQmHScdF8wuQJDjY4WVKhikuYrH9n/zvfr5/9ox4FHig3Uu6Sccv39jDVxcWEVEUSrMt3HTODD6p7eC6M4p57pODNDj93PZiJSsXFXPx/EKe+7SOmXm2lP0MdCeNyEq0HfvbDOPaO3HARMKjahI8GI7FWFhYVAlGhNFyhk+87nVnFPcrwWIwbU1cNuVQpz9uJTWQfvaVAJJh1vPC1kO9oqANHx3gzBOy+eHSGRi1an7/7l5uXZacCt/zXIkzCf6QjNMXiotPocPIIacPk04dF7aYKAGUZJsJd5vqJuIPyRzq9FGabeFbZ05nV2MXsgLPb66nJMfaa/+vLChMigJjyR5fWVDIg2/u4c8rFnLFyUXc9sL2+JzXbctm8ei/qtlaHz33mg2V3HvJXPyhSOrvtDtpRCWBQacZ9ybAA2UsFUSPBMKiSjAiDHf9Vn+u+9wnh+uqoG8LqYG2NSZ85657l3/tbk3ph9iffvZlceUNhntFQX/+sJavLCxk/Ts13PD0Fr739GYunl+ISlK45+I5vLSlnluXzUo61+ol0fquGFF3DhVXnVrEY+/VcPPft/Hbd2rIsuq5bdlMbvxiKRoVPPfJQX7/bg3uQAS7UZvS+inbpufKU6dw4zObWbexmt+/W8PlFYU4Uuxfkm3BF4rwvbNK+NUVJ/LtM6fjD0UozrJ0p97Db/5dzeUVhTz2Xg3rNlZzwzObuXxhIUUZRgyaqHD5g2H0GhW3LytL6ufty8o40ObhB+fMoCTbwpPv14yJ0g/B8CEiMsGIMNz1W/25bqwWa8XpxczJt1GSY0057DfQtiYKX19Dej2PlWWFunZPkpXV1ExzSuut1yobU0Y1jV1+rjujGIiKzZoNlfxpxckUphv50dKZ2IyaeH2XTq1icrqRSysKkpI6Gjv9SS7xDpOO5q5AUhr9rctm4fKHWP/OXu65aHY8TT/2+d0XlhMKKzz8dnT4MRbBPb2pjtLcWXz/7Bnc//puHCYd//P5Yjp9IV7YXM/lFYVJS8usPb+cs2dl0uYOsmxOfq85vjs37ODBy+axv82DQasi32FEVhSe+zRaJO4LhjHqNDz5fg03L51Jq8uPSa/hylOnjonSD8HwIYRMMCKMVpF0z+s2OP089l5NPIFiKNraU/iOdqwsK7y1u4mqJneSYMSGIHsmiti6DXBj58yzG7AZtUnHxtbVipni7mzsItOsoyjDTKZZx2P/2ceVp0xJGs678YulZNuTHTEuml/Qa/mTOzfsYOWiYi6vKMTpD1OUbmLlomJkBRQFOjxBfIFIryzJVYtLsOo16NQSN55VgsWgpbHLz/pXdqVMRnnkX1WsWlJKbZunT/ePqmY3YVlm7fJy0s0amrqCfGVhET/s4dRv1Cl4QjKZNg2fm5Y1oRI9YGTd74eq6PpYCqeFkAlGhNEqkh7MdQd6TKLwxYYvEx/oPY/d3+Zha4qEir4W4ZxkN8RdLvwhmUsrktcOiyVjrFxUTI5Vzwf72pME6/bzyvjFRXPiKzjHjnngjT08fvWCJJHUa1QpBUSjUrHurSoe+3oF7kCYyQ5TfLjz+2eXMmuSPb5Cc2KbnrhmARkWPTsaXDzwZhXXnVHcZ+S6bE4+6zbu4drTplKUaU75QhCWZU4tzkCnkdh2sIupWWZsBjO/u7ICdzBMlkWH1aDGG5A5qTCNoozx79gxKFKsED0cuFvrh7DoevCF00LIBCPCULjej9R1B3pMovA1OP08vamO9VdWoFVLKbMWm7r8yEr/hiABijItFKa74lFQfpox5bHTsiz4beSMSQAAIABJREFUw5FeEdWalyq575K5qbP7wpEkkSzOSi0gUzLN+EMynkCEHYe6MOvU8facVOSgxR1Ief7Y+mKJEVZfyShqVVTMfv7qLkqzLdy2bBZrE4YwVy8pwayLOoXsa/Fg0mnp9Ib57l8/SxjmnE35JAuZNh2THRMnuaMnI5XsEXO2H+1aNSFkghFjKFzvR+q6AzlmoMKXYzOglo4+BJl4/rJJNhQF9jS7MOk0KY+1GTS4A5GUgqLq43o2g5YChzEuShFZTumwf6jTi0GrQq9R8cymg3xrUTERBR7aWIXDqGXWJFvK81sN0aVeYuudxSLWpzfV9brOzFwbOxu78IdkttZ30fJWNdd/YTpZFj1ZVj3VzS4cZj2NnV4yLEYmp+sosFl4/JoFNHcFSDNpOdDm4UCHn8UzchBMHIbdomq0EM4egrHK0ebI+nIBiR0T8yxMFIE155eRa9dTYDfx5Yff6yUoq5eUoFZJPPDGYX/Duy4oZ1lZHrubXWzc3YyswIwcK/e/votlc/KRpOgc2Iat9Syfl49Rq6ZiioMrH/sIh0nHVacWUeAwYTdq2LDlIBVTMrntxcPrf609v4wcmx67UU2rO0yLO8ialypxmHTc1r2oZm6aif2tHgJhmQ9rWrh+cSnf+tMnvdr/66/NR6dRoSgyRq2WDLOKfLsVnU49Zu3QhoF+d8qYnqPM+9qPj+li/Zn7itZ+LR+piGx0LKpGEyFkgkQGW6Q8XEXcsqxQ2+bhkNOH2x8hz65nVp79iFZZiceEIjJmnYY2T5B0k44cu57Jjug83CvbG7np2cPzez+/cDa5dj3+UASrQUurO4hFryHXpqc4y0owGGFDZQO3PL8dh0nHNZ+bkiR4dy4vJxAK4zDrWVSSzus7WuP2UdcvLsFm1NDiCuDpYRNl1KqYnGFk56EurHoNEUXCHQjjDUSwGNQ0uwLsbfHEsyhLc6zMLTTxUY27l89jUboRSYJMS9TNJD/NNqS2YuOE/guZPUMpP3/loC/kbq3npn7OfQ3WjWMQCCETTFxi0czWg874Q3N2gZ3FM3KOKEpDUcSdSggB9rV62NnQxcEOLwrgC0VYUJTOqcUZvR7Qsqywr9VDbbsHiz5qsNvlC2PWawhGImSY9Umrcyf21axTU5xlpqbFwyS7gZCscMvzhwurf3npXBaVpLPloAtPMEKaUUMgHCEiE1/CZcPWer63pJSiDANhWaHFFUKjUjDpdbS5g3T5gui1am5PiMZ+duFs8h06HCYd+1p9RGQFk06Nyx8mx6ajyxeJR2ixY35x0RyMOhVNTj8F6SZaXQGaXQGe/eQA3/lCCQuKrPhCMtMz7cfFKs6DYEBei+eu6dNT/ai01mwfiz6No+a1KBCMOnXtHqqa3L2cJKZnWZiS2fcc2NFWuk4kUbDy7AYiMjS7/IQjCre8sI3aNl/cuT4QUrj3tZ1x14qZeTYefbua9e/UcM/FczhvzqS4UKYS09VLSnjyv7V0eIPx+aaYg//+Ng/X/+WzeJtvXjqD2raoM/xPvjSTvQ1dSZZP9762i0C4lIc2Ru2hHnxzD9d/YToPv12dNLz3439sY/2VJ2E3aPj37gMsmpHLx/ujKwickGvlvtd2Jd2nn/xjG4/+v5PQqxUs+v/P3pmHR1We/f9zzuxrMlkJCUkISVgSFgE3irxK1FqLgHurlapY2re1UO1iXQARaqtt9dVqa21tq7YWtdaN19oq2tf6c0VlCTuEJCRk3yazz5xzfn9M5jCTmYGwhEXO97q4rmTmOc95ZhLmm/t57vtz62hzh7j1uQ1U5tm5c8547CY9G5v7Eurgfvz3jTx41RTu/ce2hPO5UERh2cu1PH3jGezt8ROKCEwpdh29XxBNJ700I9N0UmsoW39tcQW+EP2gfWjtTqYWuw5oZF3eYEKBb+zDP1Vxc8xsYmdHqWq8WvoCbGzqU4uB48+4Vs6rpssb5IE3tidAjFOZ6UNrd7KkpiKa2BGRuGdeNdtb3Gxq7iMkSQnnV3pRYG+3l+vOKuXef2xNQj6dU5nHHS9u4ubzytX+YLl2U8qEkda+ADrRwpWnl7CuvifhD4PFsyt4vbaFcyrz1PdrZ6ubSUWZhCV45sN6fnPtaZgNOtrdQdyBSNL1T3/QoCZ7xO4ZYzw++vYu2vqjrWN+v2D64f/CnCI60joyT2v9cQUOH+p2pWZkmk5aDbUtizcUSfnB7AtFDjj3vt5o8XT8h+2z6xqTMgvjzSZVQXH8h7GskJJasfTlWhbNKuPGGaPp8gRVY05FGXFZjSkLohev/pRbLxjLLeeX0+UNq9SMxTXlvLy+MTq3L4SswLZWN1//Qild/UFcViP5TrN6H6spmhUZDwDWCeCyGQlLMmFJSfkan/j6dFr6AthMevZ2eRmT50AnQlO3l2vPKmVbqwedACMzrWnr4KTEl6rWnEWZk8aBn5s01F+RU1dHWEd2PIHDhwMP1oxM00mrdG1ZXFYjM8tz1MisJCt1bZTNpKeuw5Myiqvv8iYxEx9+ayePXzc9qTA63mzSIapiUYpOAGVgzGAob4bZgC8scd0fPlIN6nfXTU9ae7qC6IUzy7jthY384orJLHtl//N6UeQrpxfjC0tJ26unFWey4Gzo8gRV8zLqRe740ji8ISnBLH8yfyJlOVZ2tntSvsYP93SrLWJuOb+Se9Zs5sdfGk9Znp1uT5jVHzeyaNYYdrSn7kJQnmvnl29sT3g8Bv5dfkkVVoMYLRk4+RtkDrtONWiwZmSajomGI/sv3kDiTcEdCNPY7VW3DUfnJJM6br2gkiWr16vtTwYncKTjLfYHw0nryHeaKcm2MGdSIWPzHWmp82aDyIQCJwpQkm1Rz6Tii3m7+gO4rEZa+qL3v+vlTdx/+SR++cZ2dVvwtFGZ6pj4tcVM1BtMjEBH59gQgJ//a1vCVunqjxupHulkZKYFAZnfXjeNLk8IRVEoz7dz45/WJZjlnS9Ft/U6Bkxv8Gt0WQw8/NXT8Acj2Mx6Fn5hNBlmPZ2eEP6QxJxJhaxcsyVtFwJ/OMLN51UkUP5Xzqsmy2YgIis8+u+d3HpBJSOcxyRDTtNJJM3INA27hquFSwwN5bIaue6skoQzp3svnUhxVtQs4wuWG7q8fLa3lz/+v3rVCFIlcKTjLW5v7Wf8CGfC2GKXle+eV8FdL0fT1+NJGfHQ3UWzytDpBJwWHSvmVifUSwXCMne+uIklNRVcd1aJeqbW0OWnOMvC92oquT0uJT2W8BF7DfFmaTMnbg3KsozVpE/JQozIMv3+EBaTgW8+/UlCjVkqs/QGJZ5bt5dbzq9MMOFlc8aj1+kSmIcr5lZhNepobvITCEsq3SMVxmvV/Gp+9dZOls2ZwJM3nEGvL0SG1UifP4zVqMeoV/ivynzynGaKszQAsKZEaen3moZddR0eLn74P0mmcCBw71AkywqvbtzH7g5PArfwQPO/v7uTr/4u+RB89aIzOassJ2Hul9Y3J9QzxRISHrx6csLY3e0evvyr/a+vIMPMldOLqMx3sKOtn+fXNSUYzrPfOIudHR5+8PzGpHXcd9lElr+6WT1TMxtEnlt0Flc9/kHS64vv9hw7v/teTSV2sw5PUKK1bz/Z/vHrprF49WdJc/zh66fT6wtx6/Mb0s4f/9jvF0xnY1Mfz65r5GeXTeL9ui7Gj3DitOjVjtLx4+Mbbi6bM0Ht9hyLoHUifGFMDmE5gkmnY0NjF0aDkdIcG33+CJkWA5IiYzXqcFlNjMk9RdmJUQ1bQfTRAv8eDR2gyFpLv9d0/DRcLVxEUeDL1QW8sbVtyPMPlWwvigJTizMTKO9PfxBNeR88tqHbmzBfS1+Ah9fu4ldfPS3BCGLranEHMOl1KddhNekTEhx+eulEOj2hlK+vKNPCz6+YhMmgA0Vm5bxqwpLMnk5vUkLGttbU51I9vhCeYOpkmOIsq7rGWBRoNog8u66ROZMK6fWFeXjtLn5wYSW5jtSZjp5AdO6WvgC/+fcutQVMrAvBPfOq0esUzAYjBp1AlsOW8MfDkpoKCl0WCjJMVOQ70DREHUKyx9EF/x4NHTo8WDMyTcOu4WzhoteLVKY5l0o1/6GQ7YuzbIwb4TzoWFsa9mGGJfXjBRkWPqzrTNqCXFJTQVNPlGk4rTiT06+bxtml2XzW1JtyHrvZwMo1W+jxhXjwqils3uemujADdyCSBCUOSXLKOXSCwMhMS8rnWvsC6pmaosBT7zfgMOv57uwK7nqpll9fMzV6XUROy3/MthvVx2P8xEWzyqjMi5qS06Jja4uH0hwbOXYD4wvsrJw3AYfZiMWow2LU8bePG6geWXngXwRNCTqUZI8TBfx7JDrlGC+ajr3SdT4+Wi1cYskcQ5k/dl722uJzWL3oTF5bfE7as7qhjs13mtRoJXb/JTUVFGZaUq6rqsBJcbZNJcjfPLucRbPKsBp0rP64kZ8MIKW+UJaD0ahLOf/SORN47N+76PGFomdw/hCrP27EadJz2qhMFUoc0wufNKVco14nIA309xo8//Of7OXRt3fxyFu7ePTt6L1GZlqoyLWzaFYZCAq3XlCJToAn36tL6tS8Ym4VDrOOH35xrPp4jy+Ezajn5//aRjASrU1zWY1kWQ20uYNU5DqxmYx879n1fP0PH7PgiY84d1yB1hhT0wGlnZFpOiYabrDrUOc/nOzJg10zGAslCjBpAIEFpFxXJCLzcUM3XZ4QgYiEw2RArwO7yUC+06QmqqSa32bUUTXSQUhSMOpE2vuDdPYHKXRZuWBsHrIi8//2dNPeH0zo5Hz/FZPo7A9iM+qxmfRk2gycVuhkW7sbFJGwrOAJRNDpRB59awezx41ISqA5o8xOJAKbmr34QxEKMi0YRPCHFeo7vZTl2ensD5LnMCMrMmPzTWxo8rO5xY3VqGdCgQN/WMJm1FPf6WGky4pZLzAqy0Jhpl3FbJ0iEOBD1bCckXla61nyxeoj3lo8BsxF7YxM0/HVcLdwGcr8h5M9OZRrRFFg9th8ynLs6odvscuaYH5nlGYn3EMUBUKShFEvkmnVIyvQ6QkRjMhs2NvD+IKMBO6iQSeo23G5DhP9wTD9/khCJuPdl1TxYUMXdrNIfyDC4+/s5ubzyslzmMhzmnGaRfId5uganSY2NnbS5wtTOcLK1hYvbl8Ik0HPI2/vZM6kQpxmHX9ZeCbekIQnGCbbZkQP1PcGEQWBLm+Y59bt5erTS1g6kLF55fQixuTaMRtFgpHoNmNooMrZE4yweZ+bqpFO+vxhRufa8QQj/Prt3dw4cwyFmfYh/yw1HUSHcEZ2NIqfD6eI+WhKMzJNJ6UOJ7I6FHbi4GviKRfbW91MKHAk4K3iP3yHYn57e7yEwgrBiESnJ5jQQHLlvGr0Onh/TwdfGJNHQ5eXLfv6Wbu1lWvPKlWNbuXaLQl1Yb/5v12smFuFN6hwx4ubcFmNiILAslc2c/boLL40sWBQm5VqWnr6KcmyYjPqERDY1d5PhtlAvsOI02rko/ruhHO8VfOrKcw00+XxYdKLfP/Csfz479GyAafFkBABrpxXTabZxA//tjHp7GxJTQW5dhdLVq/n5vPKD/pz0HRoOtUKorUzMk3DKllWqOvw8P7uTuo6PMjykW9lx4zi4of/w1d/9yEXP/wfXt/cetC5D5Q9eaBrYnVqazY2oyigAPVdPiIROeU16Qyzvsurrv+Thl6+u/oztrV6VBOLjV36ci3v13WzrzdIU2+0bcvqjxu59cKx9PvDSApsbenjmjNKeOLdOh55axe//08d15xRAkCfP8zCmWV8r6aCYESiMs/Oov8aQ1Ovn5vOKaMgI4qjWvZKLdNKc9ne7uE7z3zKd//6GS+tb+bWC8eS6zRjN+qjaCqrUV3bXS/VIitQnm+nNDuaIv/zKyYzZVRmEm1k6cu19KfJiMyyGmnrj3aVjrEdD/Rz0KTpQNIiMk3DpuEqhD6cyAoOPXtSlhWsRj1XTi/i2XXJzSxjpHpA7RPWH4iQbTNSmWdnY7NbnSu+HKC+y6ummKdDWskKLH9lM0/deAbBiMTV04sJhmU6vSFeXt/MqvkT+cZTieSNB9/cwZ9uOD2BEVmSbeFb/1XODX/6WP1+6ZwJ7Gr3EJJkAhGJOwfWUpBh5pozStRC7Vjk9K1ZZTz2Tp1KG+nxhdnb7UuK1FK9jm5vKC0eLNdhUksOjlYWq6aojhQafKg6UsjwkZ6vaUamadh0uIYTU7rtw8OpS5NlBVGAey+dmFCnlC67MWbC972+lZvPq0gJ+r3thY1UFTipH2gTE/tgL8m2sHxOFTvaPEiKjCgI+MMSFoMeWVYS1m8Z4AemQloFwjIdniBFGRaeXbeF2780ngyzgRtnjMbtD6epCwsnRHhzJhWqPb8KMsxcPb044Q+L0myrSvC4bGqRSuuIFSz7wxKjsqwsOLuE+17fHs0+VEiCBu/t9qV8HVm2ZNLJkpoKMm0GRFHmh18cS0uv76hmsWriiKHBh6ojOWc7GudrmpFpGjYdbiG0LCs0dnv5tLE3yXQuqhpxWJFVfJuVRbPKqMx3MH6Ek9E5qc/W4k24vT+g4pUGv5atrW5aev3qB3XMLL79zKdqO5VRLiuCAB/WddLhCTA6205JtoUrp42iIMPCg1dP4Wf/2Kr2LIsRRMwGEatRT0SRuXHGaFxWA9l2I+vqe7AaUxdU2436hMfiI77LphYlmfFdL9WqLWGKXRb1NQxGfi2/pIqSbAuLZo2hqdeX9F48t65JLXaOXbNibhU2o45Cl0UtLBcFGJVlxWoQEASRXIeJqgIno3NOaWLHUdepdkamGZmmYVNBhpnFNeXEjq5e+KQpJRkjXjHT2dbqTsBOxUdzh1LUDImmFKNuxBBW6T484034zx80smzOhJTGsbPdQ0WeI8ksXFYj188oTeARLqmpYF+Pn8p8u1pUHL81Zzfp2dLiVgkii2dXcPcrtfziysmU5ljZ2+NXa81WzqtOGemYjakjvANtY47MtHDbCxtVmG8qw1vx6mb+eP3pNHZ58IekpHv0+EK4B87mYtipHl8QvU4gy6bn7LJsOj0hch1GjHqBP7/XwEUTRzK7Mhu7RdtS1HRk0pI9NA2LZFlhS0s/j7+zPxlhwdklPHLNaQfcQoqZzmAyBeyP5g6lqBkOL8kjFvUBKl5p5aCi4cWzK3h+XRP+UER9PGYW8dt0sfs9tHYnnd4Qrb1B1cRiz931Ui0iApIMl08rYuHMMp7+oIFQRKGhy8eWln7ueqmW/kCEOZMKWfpyLVZDYkF1ntNEa1+AxbP3Fz6/uqGZFXMTC5XjZTaI7O6ItmV54ZMmbjm/Mm30ubfbR2munTG5tqTi6lvOr+Sp9xt49O1dPLx2F33+MBaDjj0dfRhEkffrutje1s9/dnbxnb+s57XNbZRmWzUT03RUpEVkmoZF6Tob/+9300dBkGg6B9o+PJRao8NBZA2O+na0exgVt0UWz14ckWFWo6PY3AdK4uj0BlM+F5JlNUkjpsU15dz1Ui0rLqkiEJbp9AbRidDQ5eexd+rUkgBJBqMu2qvr2XXbWTizjOIsC43dfl7f1MLvrptOjy+YtP23dM4EHnkryoNs6Qvwp/fque/yiSnfL4tRT4c7xC/f2MHKeVU89rVpeIIR9nb7+NN79Qlg5Gy7kWA4SEjSEZEVCjIs6lmd2SDyyyunUJ6nsROHS1IoSGdd7fFexpDUt68OmHhEc2hGpmlYlC4K6vAEGJN38MzCVK0+Djch4FC3ImE/nmrc4nMSipy7feGkeUqyrYQlmV9cMRlJllk2ZwJt7kBKMxAFKMy0pnyu3R1g1fyJ3PXS/nPB8lw7gbCsZvb9+YNGll8S3eZs6Qvw6Nu71Ov/56opOM16Fs0ao/b9ihljlzfETbPKkCQ54byqJMtCjy+krqOlL8C2FnfKbcuWXh9VhRk0dPn5qL6XPLuRQFjCaTGoc8QIIBE5QlDS8eXqPPR6kcJML0/ecAa+UITiLFvas0lNR0e5DhOr5h+ZORw7HTokeLA0RJWmYdHhtm4ZnJgRa4dyoMSMoehoYY9SzQPw1vY2NXPRZTVyw4wSsuymhHOwJTUVVOTbObcij39tbUswxJXzqsl3mnh47Q7OLMtFJ8KEgmjTy6t++z7fO78CZSBbsDLPztVnFCdEVktqKrAZdWTZDLhsJj7c002G2YDTYlAbVU4vyWBxTSVufwRvMEK3L8QZo13sbvcmFErf9eXxuKxGtrf1q4aXYzPisBgodJlZ8MTHuKxGvn3uGPxhib982JDQ9LM4y8S+3jBnlmZhNOoO6+elKaWG/As7fvx4ZevWrcO5luOhtK9fMzJNw6IjqSE72Vh7sqyodWQhScJqMOALRciyGvGFI/QHJDIsiQzFUEhiU0sfnf1BnBYDiiJj0Ovo84Wxmw24A2FcFgMTCzJYu6Od+/+5jRtnjKbLF0JWwGnSMbEog7Ck0OePYNAJgILFoCPPaWBbi4/bB+geN8woYVyBE19IwmnRY9Lp6PGFyLEbKc218llDL6Io4A1KGHUiWXYDKAJhSSYkKXiDEXLtJuxmkbAsU9fu55dvbOcrpxczNt+OQa+jPxAhx24kz6mjzytTNTJTxWtpOmrSjCzdE5qRaRouDachDQf892BjAfZ0emno9mIz6sl3mijKtPJRQyeSLNDtDRKKKAncweIsK3ZTdAe/ItfO6AGE1X92t2PQiezrCfDcukZunDmGba1uZCWaoHH19GKeXdfIzedVUJxtwhtUaIiD8ha6LHT0B9nZ7kFWQCdEt5MKXWZCEQW9GE0ccZp1NPcGuTNuu/Inl06kwGlkX1+AilwrnpCMxagHGTyhCN6QhMOko9UdTIgo7710IlUjbdR3Bej0hFi5Zov6Osty7OTYjRj0CtUjMrBZhhUee6pqyP95SktLldWrVw/nWoZFBymM1oxM04mvoRrNcMF/DzbWqBe4+ZnPErbzqgsd7OsNsvyVaFfnJ96tU5FW8ed7sQ7Ot100noo8C5uaPdR3eXl5fbN6pjV47JxJhTzxbh1PLzyD7S1uCrOstLuDjHCasBr1NHT72Nvt47l10bKGJTUVTC3OpMMTxGrQIYigKALf/sunSVu8v/rKaQQiEuV5Nrq8Qbq9EZp79tfDLa4pT9l1+7GvTaOp20u7J4TVqMNhTuQr3nvpREqzrUwZ5Tqho+iTVEN+Q23ZBcrZ37hnONdy1HWAztAxafR7TcdWg02p2GWlscdHlzeIUSfiC0kJZnUoRhOfERkjUGxrdVOYaWFiYcZBC5zjrylyWXCa9bT07TfPdESSRbPKkrIwH79uGssHzpdMelFNvR9ch/XwWzv5+RWTue/1rfzssknc8eImbjqnjDmTCpMYhQ+/tZOFM8sYk2ujMs8exTwZ9fz3nz+lMi9ag9bq9mI16rEZdSpC6qG1O/nD9dORZAWDPkoH2djclzLpxh+WcPtDhCNWBER2tXt4/J06FY5cmGFJed2njT1MKspk1WvbWDizjP95M/F13vHiJn63YDr1XV4NAHwcpTOayCk7UTo+D780I9N01JXKlFbNr2b1Rw1JPa5iZnUoOKtYRuRgAsXj79TxwFVTmFDgSDAmgI7+IDedU4bdpENAUGu8Hn+njiU1FTz1fjSV/oGrpuCyGtKmzg9+rNu7HxU1Osd2wNR7fyjCjTNG0zeAl7KbdLisxpRjdWI0nX7hOaPRiwK/emsnK+ZOwGLQU7uvLyEKEwS4e24Vd7+yGU9AotMT4rYXokY5dqB7djy9P9p0U4fDYiMQiWY0FmZYcFmNfGtWGV2+kJolOTgik2TY2NR7wAJrX1A6KL1Fk6ajKe00VtNRVypTuuulWhbMKEuKVGJU+EMpWs53minJtnD7xeNTzvf3z5pVKv5b29t4fXMrX//jRzzy1i58ISllofJlU4vU661GfcrC4cGBXpQlaFDHNvf6WDy7Iqk7c2xslzeELyyRYzcyvSSDDIuRfb3+lGPHjXDS1OujrS+ALyRx/YzRLH9lC4tXr+el9c0snTOBb59bTiAsMSLDgsUg8t//VYbLZuDn/9yuvr6WXh+3XzSOBWcn0vt1okBzt5f+YJiwpLCvz88NM0rwhSUef6eOe1/bqtJMYmtaPLuCNRubkeTEtQ5eu9Wk0wDAmo6ptIhM01FXOlPyp2np0d4fOKSi5WKXle/OrmBXe/8BI6dAWGZjU1/CWU86Ykisp1cgLBOSJO67fBK3vbBRjRxvOb8Ss16kJNuipppPLsrEHwqzcl41S1+uxROUeHVDM3dcPCGp8HhJTQUQTZ//3YLpfPvcClas2cxXTi9m1fzqhKSK5ZdU8Yd3d3NmWS7jRjgQgPte36ZGoYPBv0vnTODxd3bzldOLkRVFfX0vfNLEsjkTqO/ysvrjZHr/qvnVOEwG7nl1C185vZjKEU6VfN/SF2D1R408eNUUtra6kWR4dl0j36up5H/W7lDnH1zrt/ySKkwGQQMAH2cda/p9KlktVoRDOCc9ksJozcg0HXWlM6V021WxjMahFi039vi466ValQ04eL74/KVUxnWga8wGEaNOZGSmWW1aOTbfwS/+tY0MsyEpMeOW8yuZVZHN778+HW9QoiDDzOZ9fTy/rkm9XlHgqfcbuHxakbr11tDl4erpxaz+uJGbZpYlFCmHIxKXTCrksXfquOX8Clrd+0kgqc7fVq6JNtiMmWTs9cXQWjfOLEtJ77/rpVp++7WpXD29mIfW7mTlvMRWLBub3dyzZgs/v2ISPb4Q00urKMww8c1ZY7hnzRZa+gI8u66RB66awq52D8GITJbVwNSiLC3R43jrGNPvB8vT2czCy2dRXX0o53SHXxitGZmmo65UprRqfjVPvleXltaRiqSRLmsxFvGlighi510xxbb54qOUVNSKp95vULfPwpJMts2kUjFiZ3GBiJSUmPHgmzuYPOp0bnpyHd8+t5y/ftQNqe37AAAgAElEQVTIHRePp8cXUqkbsN8szQYRp0VPQaaVH/5tAwtnlvGT17YmGevN55XT4wuRZTPSPLD9eKBzqdjj/pDET+ZPVNPtd7R7yHUYqetMfZ1Rr1Pfv/b+ZBpJjy+ETgSdKPLgv3aw5PwKIgMUkx3t/UgyrBwwNbNB5NWbZ2r1YyeAjjf9vrOulurq6iNqzXIo0oxM01FXOrzT1GIX3d4gzy46KylrMXbdUPiJsYivpS/A0x80qMT1cfkOOvqDCbikiUUZCT3IenwhrAYdN59XTq7DRLc3OvbyaUUoSnT77KLqEQlmHIs8fnjhuJRm0O0NEQjLjM6x0eMLce9rW5MMNpZSf//lkzDqRBq6vAc0plyHiUWzygAoz7Ozal41d71cq76uVBGl2SCSYdEjKwoPXjWFiKwgAN3eEJOLMlNe1xfX1+zPHzRyy/mVCcT+VfOrCUSiUV+PL4TTbMBrk9jX6yPfaU6ITn955RTGaAkemo6DNCPTNCxKZUpDhfweTINN5ol3o5Heyv/dilEv8Oyis/CHJTWqa+z2qlt3sW3Chi5/yr5bgyPEwkVnsXZbO5IMDd3elGZQmGHBbBDVZI+H39rJ0x80sGhWGaXZNkY4zfjCEe67fBLTi7No6vVRXZiRkEgxeM6RmRYikowoQpcnyMSiTJbUVDAyw6yeyQ02yVXzqzEbdECYn72+lVvOH8v3nl3PzbPLGeEwpjy3y7EbE7Yi//RePYtmlVGR5yDPYUSSZb7//CZ6fCFWza8m22bAF44gYkVSZB6/bhreYITK/CNDiGk6uhrqGdmhnmMNVUcDBHwo0gqiNZ2UkmWFPZ1etra62dHWz/MD6eipas8G8xsXnF2S0M155byJGHRCyiLsA10bM74Lx+fzr61tbG9189L6ZuZMKlTPxtZsbOb+yydj1otkWA0UZ0XP/NY3dVHXEeBXb+1ISsK4Z24V6+o7mT46l+IsM7e9sIk7LhpLX0Bm2Sv7qSEVeQ5yHUY8wQhmvY6QJFGWY2ZPVwBFFuj1h+kcaHuT5zBjNeqo6/DgDkqIAlTk2akeaeOTxv4kJuTITDNWo54cu4E2d4gsm4GIJHNWWS7ASYUQ+xxpyG+yJSNbqZ676IBjPJ3NfP+Qz7GGroNQOg5HGtlD0/HV4SClhqJIRGZzSx8tfQEKMixUFThTntHE47IKMsz0esO0uId2TZs7gNWopz8QwmrUoxCtSyvIMFNVkIFeLxIIRNja5mZXhzchWlo1v5rR2bYobcOoQ6+DM0py2Nvjo8cXxB+WCUsyFoOe/mAYp9mA2x/GbtZh0IlIskxzT5C/fFjPDy4ci6yAOxDBZTOgEwTa3EGybEasRh2SLNEXiODxS/xigIWYbTOy7JXNKnNx7Ij9zMUn36vjkklFFGebCUWgrT9Iti0aoekEgbe3tlCY7aRqpB13IMK0UVna+dfx1ZD/wzgLSpWLV/z1gGM662pZNX/iMTvHOgrSyB6ajp+OBCB8sHkHU+TTzRvb6izNtg1pLanWfOsFlZh0Ij8dSIWPXTu7IpdXa1t45O2d3DhjNHd8aRyjsqy09wdpcwf41Vs7E9iJ/wm30+UNYTMaCElRIki310tEIgGB9eOLxpFlNzJhpJ1rzyzltr9v4sYZozHpBfoDkQTDvPfSiRS6jOTYjdz9ynpunDGaERkWljz7GZV5dr7+hVLa3UG+OZBebzaIrJhbxasbm7ioulA9Q4zfqvzu7ApWf1TPbReN50d/28gfrz9DK3LWdEJKi8g0DbsO1tIlFvmkw1el0+52D1/+1dBaxcQit+ZeP7ICj//fbjY2u9Nek27NS2oq8AQlte7s1Q3N/PLKKXztiQ9ZOLOMNRsPzk587GtTaekLJjSafPCqKdwSV0Qeu9/PLq2mNMfG+3XdlOXa6Q+Eaez2peQg/va6aRhE2NAUfV3+sMTz65pYOmcC21rdaa/55tOfJD0e40bef8VkdAJsaennnIpszirLOfAPW9Nwauhbi1n5ypRrbz/gGE9rPUu+WD1sW4uHo8OFBmsRmaZhU+wca2d7Pz+/YjLNvT6efK+Blr6Amu4di5Due31r0lnRfZdPYmSmmWybKeXZ1dYWd9oC63hTikRkXtrQnFh0PKcKPmpgY3N0jjZ34jXpirpHZJi5/e+J0UufP6RmIF45bVRKduIPLqyk1x8tCDfoRNXEAFxWI+5AOOX9dDqRXR3RguYfXzRerZ9LNbajP0hZto0xuXZq9/VRnmfn/ism0esLMaUoE5fVqHZxjl3T60t93xg3MhCKUJRlRSei0TpOJg2hjsxstvDMthDirk3HaFEHVhQazGFtdWpGpmlYlGprbklNhQq47fGFyHOYVZzVwpnJ+KrbXtioRgaDt//qu7w09fhSZvzl2hM/cDfv61NNLDb3ijWbeeDKyWxu6Ve5hrKsqADjGKZq8Nx7Or1JJvXH60+nJNvCacUZ9PkiCVxDiNau5djNGHUhzAYRb1Bi4cwyTHqRsSMcdHtDKqpq8P30osgv3trOjTNG4w3tJ6OkGtvY7aMw04w7EObl9dFWMD/628aE9/+p9xtUMzMbREZkpC5eLx3gRha6rNgMOqYWuzRax0mk411HdqylndxqGhal4i0+tHYnXb4QV04vUtPcY5HPwQp9Y0zGmNrcARRgSU0FJdkWvnNeOYtrynnw6inoBzUlbu7zJ8xdkBGldkiKgl6E59c1ce0TH/L65lYiEZnXN7eyePWnLJ5dkZAiv3TOBJ5f15S0Rn8owq0XVKIXBEbnWFg1v4rxIxyMyrRgN+q4/eJxFLlMTBjp5P7Lq/EEI6zZ2EwwItPrC9Ha5+ftbe1J97v1gkrCssycSYV0+ULs7Y4a9wufNHH7ReNYXFPOzbPLWVJTzu0XjeP5dU1IMtz1Um1KksdDa3dy5fQidf6fXDqRfn846b6LZ1fQ2utj5bxqcuw6BFFmxuhsLTNR0wmrYY3IBEH4AzAHaFcUpXrgsbuBbwAdA8PuUBTltYHnbgcWAhKwWFGUfw48fhHwEKADfq8oys+Gc92ajlxt7kDKyERWYFpxJv9VmYcoCmpxMxwYHTV4yzDfaUYngEEn8p1zy1n2yv7zplXzJ9LeH1S3JHPsJnXuVLVji2dX8PQHDdz63HqeXXSWmmovKworLqki12GioctLjt2kFlvHrzHTaiQiQyAi4+4J0BTX1ytmSDajjuYeP8XZNpa/Uss1Z5QkFB4vnl3B67UtKtZqXL6DLk8Ql8WAToyitmIGFoxImAw69czLbBC57aJxGPUCngGeZbo/DCrzHdx6QSVTRmXQ6wti1Is8u64xAacVK/4uy7OgFwXGjHBp2YqaTmgN99bin4BHgKcGPf6goii/iH9AEIQJwFeAKmAk8KYgCJUDTz8KXAA0AR8LgvCKoihbhnPhmo5MBRnmpJqrJTVRMnxJ3HlXabaN+y6fxANvbE9Jw3j6gyhuajBAuNhlJdthpqHLy31xtPcoQ3BTwpak3Rw9E1uxZnPaXmELZ5bx6Nu7aOkLpGyMufySKn73zq5kSO6c8dR1eunoDzLKZWXnQF+v+PkfeGMHv7hiMp3eaHuUK6eNSiLwx68hPtnij9dPZ2qxi88aezDqBQKRKBT57rgztkBY5r7Xt/HoNadhNeoO+IfBjrZ+ACwGHUaHBVmR+e7siqQ6Mr1OIBiWKXNlaCZ2EupoQYOHq2A6lU5YaLCiKO8IglA6xOHzgNWKogSBPYIg7ALOGHhul6IodQCCIKweGKsZ2QksSUY1Mdi/tfX7r09POGsRRYEvVxfgshrZ1tLH/VdMprXPT0Wenbtf3awy/AYDhBt7fNw50JzyYFuS/3P1FF74tJH7r5iMLCtpx5sNIgUZFq6cnmx2K16NdoCOR2KNH+HEbtbzjafWseKSKrzBSFq6fuy5LKsR6SBriBl4ICzT3BugJNtCRb6DH180nlueW8+KS6pSXh+WFAy6qBGt/rgxieQRm/f7F1bS5Q2hKJDrMJJtN/D7BdNxB8LYTHpMehFZlhmb68Bs1o7RT0odBWjw4YF/j0QnHzT4ZkEQFgDrgO8ritIDFAIfxI1pGngMYO+gx89MNakgCIuARQDFxcVHe82aDkHt/amz/nSCkHTWoteLzCzPochlob0/QPVIJ8UuK3+8/oy09Ij4rMKDbUnWd3m56vQSfvS3DWmJ+aIA9146kaoCJ3u7fWmNpqUvoMKAb55dTkWunUBYxmrSxzWtTJ6/2xdCFCAiK4xI0x1g6qhM1SxjBm7W6+jyhJEkmcCAAabrImAx6Oj1h7EadMybUkiO3aSiuRQFnv4g2jy0oz/IyAwL/cEwuQ4dwYiELIMkKxh1IgadwMSibIzGQYeNmk5oxX/+mZ1ZR5zscazBv0ei47Fn8BtgDDAFaAF+ebQmVhTlcUVRpiuKMj03N/doTavpMBR/9hWT2SCS70ydwh0rWD6rLIeyXDt6vZjw/WDzi80fI+APTlb4+6dN6ve+kIQvGGbRrGiH6KWDGkYunTOB6pEZTC3ORK8XGV/gTLn2+JLLmPnFsv6ae334gmFKc2wsqUlczw+/OBabUUdJthWLUcRu0iWNWVJTgUEv8MS7daqJLb+kCoNewKQX0elENdmjudeX8nqrSUemxcAf3tuDJMOeTg/5TjO//08dj769S+0oXeiy4LLpKcwwkm+zc3ZZLoUuC7kOE/lOM6eNytJM7CRU/Oefweo43ss5phr2guiBrcU1sWSPdM8NJHqgKMpPB577J3D3wNC7FUX54sDjCePSSSuIPjZKh54aLppH/H3jGYhXTi+iMt9BptXAnS9uoqHLr97TqBdYuWaLmmBRmWdn0awxSEo0AukPhMiym5g9Nj/t2u+ZV82jb+9U511SU0GRy8IFY/N5a2cH972+lRtnjMZiFCnNtRMISfhCEnaTHkVRMBpEbAY9QSmMPyzT7Ymwq8Oj9iArz7Xz7s42zh07grCskGM3YtAJeEMRZDnao8xqMrC3x8/j7+zmxhmj6fKF1Osr8hzkOw1kWPRsbPKo1I+SbAt3X1JFRFIwGUQEAcIRmeJsM4UOGxaL4Sj8Fmg6RjqqBdEH04EKpoeBozgUHR5rURCEcYqibBv42jRwfhV77ixFUT5Ie/H+caXEGZkgCAWKorQMfH0LcKaiKF8RBKEKeIboudhIYC1QMbD4HUAN0Ax8DFyjKMrmA91XM7Lh18HMKp5veChw2YNxGVORQKwGHe5gGJNeh9Wooz8QUa8F2NPppaXPh9WgZ0+XT+3XZTaI3H/5JC6uLkhIaohEZDbv66O5z0+O3USmRUeHJ0xYkrEa9HR6g4xwmqkuyEAUBWr39bFvYKwvFCHbamRHh5e/fljPghll+EMRRmZa0AkKU4uyaOj10OeX6OgPkuswYRAFOj0h7GY9vlAEh9mAJEt4gzKVI8x8tCcK9o2ZdlWBk1yHCU8wgicQwagXkYFJI830BaDPL9HmDpLnNGHWC/T6whj0Ag6zHptRZKTDrp1/nXw6qtDgociRPwpRn/jHTrRwed7x2HI8bLLHM8DUga/fj/sa4NeDvk++qyD8FTgXyBEEoQlYDpwrCMIUQAHqgW8CKIqyWRCE54gmcUSA7yiKIg3MczPwT6Lp9384mIlpOjZKVSt263PrGTeAexpqf7F4DcUcYySQOZMKyTDryHaYuTOOFbhszgQKXYnR4Z4uDxub+qjIc6gmBlGqxq4OD2/vaKcsx87onKjxxRiOMeJ9cZaVHIeRNneYb7346X4TvGISOkHg+89vUB9bOmcCbn+IDLOBhTPHIMkKbe4g+3r9lOXaaHZ7CIQVJEVBAXwhiR2tbtxBCZ0QTQj5w3tbWFJTSZ5TT0uvpJrYtWcWk2s3IYgC9V2+BEbi8kuqaHEb2NXuS+AwLr+kCp2gIMsKI11WXv60lbEFLi6dUqhlJH5OpRVEJ0pI83Wq75OkKMpXFUUpUBTFoChKkaIoTyiKcp2iKBMVRZmkKMrcWHQ2MP4niqKMURRlrKIo/4h7/DVFUSoHnvvJkF6ZpmFXOoxTe38g4TFZVqjr8PD+7k7qOjzIcvIuQGzMx/XdKc0xVgxd3+VVcVZPvFtHSFJUE4uNv2fNFkJhhcbu6DWN3V52tkXT4re39atjYzVlj79Txzee+oQv/+o/vL65lcZur2pi188o5aG1O1n1v1vp9oRV44jda1e7h+8/vwGX1ch3zivnpnPKaHcHcFlNPPZ/u1CAHe39hCSZl9Y30+kJ0ekN0eUJ8f7uLra19rP8lVqkgTqx375Thy8s8ZXTi7njxU2EJZFub4jKPDvL5kwgJMns7fWzu92TtJYVr24mGFFUE4t/3GE2MtJlpdcX4vyqQpa+XMvmlr6j8WugSdNx18EiMiXN16m+13SKKT9N9l18vddQzsrix3z73PK05liWa6fNHVCpFS6rkXynWS10ji++DkQkujwhSnOgzR1MKAUoybYwZ1Ih40Y4+OHfNiSZ5p9uOAOX1cjSL4/n1oFI69ozi9namsx2lBVS1p2NnFvFghmjE1734tkV/GPTPlzW0iTa/OqPG7lsahGPvr2Lh9bu5OdXTCYQlvmssYcZY7K5+oxiFSpsNoj89LKJKd+njv5QysdDkowUUMiwGunoDxIIy7T2BZg86gh+ATRpOkF0MCMrEgThYaLRV+xrBr4vTH+ZplNBpdk2HrnmNDY29SEr0dTziUUZCfVeezpTbz+O/e45jMmLbjnGoqw7vjSOMXl2FteUqySLWAZfzBzznWZ0YnSey6YW0dTjoyTbkgQcXjpnAnnO6D1jjMKCDDOjMkx859wKlr2SHr7b7w9zwxdK2TYQvRVkmBmZaaGlL5mHqBNIWXe2/JXN/OKKyXzv/AoKM63s6fQSjEh8Y1Y5S1Z/llQMfeeXxpNpM3Lz7HIAjHqRkmwLFoMOnSgkgYjrO1N3q853mFI+nmM3IivQ7g5Q5LKqnEVNn08drYLoVPK01lNbOzxF0oebRHIwI/th3NeDMye0TIpTXLKs0OsLJ6CSVs2vVuG7AA3d+yG78VFTW7+f0TnRM6wub5AbZ4xGpxNZ+OS6hEjl2XWN3HrBWNUcS7NtnF6ShXkgA++5dU2snF/Nzc98mvBBv3LNFp74+nQASrJslGRbuOaMEprdQXW9FoOY8kPfYdHzwBs7uOmcMkqyLXz/wnGIAlSNdCYVGRdnWzGIYproKEBxlo1trW5kJdrypTDTkpJC77QaePK9OtY19KkcxJ9eNpFQRFIjqPj30GLUsXJedcJZ2Mp51SDKLL+kKqFFzPJLqtCLsGVfP2Py7LT2elk1v5qqgoxh+s3QdNx1FAqi02m4qPnDRr9XFOXJw16Vps+9NrckU+XveqmWijw7k0e5ALANUOQHb7/9/j/7txiNOhFfWOKhgYaVsbkefmsnj183DatRp5qjKAoUZ1tYfkkVrX1+enwhen2pt9PcgQiyrDA6x8ZPLp3InS9u4ubzKtQoy27Us6SmIgGjddtF4/CHoxHc5qZels2pYmuLm7H5Dgw6EYdJxwNXTaauw0tZrp1OT4CyHHtKQ6wY4eCmQcb86L93RSO4tbsSxu7u8LBgRhnNvVu5bGoRDV1e8uwmsmwmFCWU8j0sybbw6DVTCUsyezq9ZNsMSBLoBIVfXDEZbyiCzajHFwqzvdXD6Fw7O1p6mFScw9RRGj/x86xTLdnjgEYmCMIrB3peUZRT553SlKRYX7F4DT57yXeaWFJTgT8sJW2/xTIcQ5JMjt2Ucq6P6nv4/X/qWDW/mvmTo1l27f1BQmEJm1HHPXOr6OwPpjSS+k4v9V1Rw1FkhWvOKFFbv1w2tYifvr4Nl9WoAnNFAcbk2jDoBEqyLZxfNYLvPLM/QzHWBqXHF+KW8yu57/Wt3H7RePxhKSUncktzX5IxL5xZxpjc/cYXj4768ZfGJp21rZo/kdUf1bN0zgTa3IGE97Chy893nvmUX18zFZ0ooNeJmHQiGRYjm1vcao1Zjs2Iy2ZCRCbDZmVKYaZmYpo+VzrY1uLZRPFQfwU+5BDqGDR9/lWQYUlpIPFnL8VZNiry7XR5UkdN7f0BLAZd2t5iipIc6Rl1Ij8diN4mFTpZfH5F0nbaDy4cyxPv7uG04kzKcu2Y9DoefHMHLquRxbMrCEQkAmE5ATkFsLimnFkVOSybU6WaWGytD63dD/Z98M0dLJxZhkIU7ZSKID9nUmHS69WJMDLDnBIdlWk1ctsLiZmIMQDysx81smjWmJTvYVhSKMiwICkynpDCCKcBmymLHl8Ym1FHRFYQBMiwmjhrdK5G7TgFlOqM7FgCgA9HwwkNHkGUOv9V4Brgf4G/anVcmgCqCpysml+dQE4ffPYiigKzx+azqbkvbYZjmzvAc+uaDki/j4/0fCFJnWdjs5ulL21mwdkl/PraqXS4g3R4gjzx7h61eSfsT/ho6Qvw9AcN3HHx+JTrkeRolmPkAGDf2Nc6EWwmHVta3Hz73HKWD2ol86u3diRcbzaITCrKJChJFDgtrFizf/yKuVVsb+lPeU+dGH2dDd2pEzxsJh05BgPBiIROhPJcB9vbvUiKQjAkMyLTxIQRGsX+lNKgM7JjDwA+HA0TNHigIPl14HVBEExEDe3fgiCsUBTlkcO6o6bPjfR6kfmTC6nIs9PaF2BEhpmqguQPTFEUmFiYwQNXTUlKw48lcfT4QipZvjjLQnOvX4XnQmKkNzjtv6UvwENrd/LY16axPC4qi5+/OMumXtPSF+De17YmJUvEkkvOGj2RQFg6IIzYbBCj9HuTHn9I4s0tjTzx9ek09/ixGPW4bHoWzRqTkBiydM4EWnt95DktKo3fH4pgMepZs2EvN3xhTMp7nlbswmwQ+fMHjUlnektqKhBFuPX5DXz97FJmVeRis5iYWnLM8UGaTiANPiM7mQDAh6ODshYHDOzLRE2sFHiFKF2jedhXdwTSEFUnntIhqwbXmpVkW1JEOPvPyFLVpj1yzWmUZtlo7PFhM+nJd5gozrIl1Kr9o7aV7z+/n804rSQTSYb1e3uRZFizsZnvnFtBaa6Z1t4AYVlIIIbEn5GtmFtFptXAOWXZvLmjg+YeP581dnHV6aVsbOrFpBfJd5po7PYPOqsyYjPp2NXu5YE3dqivd8XcamRFpscXSbjnynnVVBfaaOkNs76pF4shui1YkGGh2xsk32nm5fV7mTEmj0KXhZpx+Von58+vhvyDdRaUKhev+Kv6fWddLavmTzzZjeywWYtPAdXAa0R7hdUe/bUNjzQjO7E0FH5iY7eXNncQbzBCls1AWFZodwcpzLRQPTIjmYXY0kdLX4Ail4WGLj/ff/7ARdcNXV7aPQH2dvvV7dALJ+Rw48wxdPSHyHeaqB7hYP2+XvZ2B/j1v3dx5bRRFGdZyXWY6A9E6PGG6PaFKHJZAAWzQc8XRmdR3+OjrT/EZ409yAp8sLuD78yuREHGotfT5w+TbTNiMcDenhDBcJiCTBvuQJhwRGZbWz+yAk6TjtE5dra39VM1MoMilxGHCbwh6PJKtPcHybWb6PWHqOvwUpxlJd9pQi8KVI/Ukjg+5zpsaPCBAMDHQ4dZL3bYRiYD3oFv4wcKgKIoivNQV3KspBnZ8OhghpRqXEGGmS0t/UOme8TG3HJ+Jc981MBtF41PO9ZlNXLnxeP5QRyhA6Jbcq8NMB8jEZm129rY3OKmMMNCnz9ESFKwGHSU5dq4+9XNKtX+3ksnMjLDzG1/38j1Z5dSkmPDH5LY2+1DAQQBCjOtNHR5mVSUQX2nl5JsK13eMM8MAIKDYYmRmWaefK+OL4zJUyn1OgHK8+xsaOyiqjCL21/cxG1fHEsgEk0kiVH5ZUUhz2niD+/uZtE55fSHwgTDMv0BKeVW6C+vmMz2dg9fGJNNac7QuZaaTjodETQ4FQD4eOgIoMOHBw1WFEX7806TqqG2Zhk8bnFNuVqEDMlwYUhNAHnwzR3c+aXxSWNjsGKX1ci3ZpWpGYjximVElmbb+Lihm7pOL4+/U6dCgB95e1dSUklLX4A7XtzE7xZM48YZo/GFJb79l/3p97deUInLamBnezR6+qShh/I8OzqdyDMf1nP51GJ+9Lf98ODHr5vG5n3uhILxJTUVfHFiIT94fgMLZ5aRn2Fhe6ubr04vZHyhSzXkWOsYiWgrmEgkwtKXE3FasXT+Dk+IlWu28OQNZ2hGpgk49erIDmhUgiBkHejfsVqkphND6Wj3MaBvunHyQAo9RMkUMbhuhyeoAoQburwpzSjTZqAyz54AIo7BihecXUJQktWGk/GKdVdu7PbSH4jgD0vcdE4Zd1w8PoG7GDOEy6YWqd+DQJcvlDTugTd2YDcZePydOh55axe/faeOph4/3mCEBTPK1CxEgMo8OwadSJbNyM+vmMykQqeawh+WZK45o4Qn3q3j23/5lN++U8essSNYNgj2u+zlWmRZxCCK9AXCaTMa7WY9gbCMLxQ5jJ+qJk0nvw6Wfv8J0S3FVCGdApQd9RVpOmF1INp9fKuWVONS0z3q1IjOYtKlzNgz6ERunl2RACKOZS0Wuaz88G8b1Nqwwan7S579jCU1lehF1KhocU1qKHEsrd5sEAlFJCryHNx0TvTX+4VPot2mL5tahDsQ5qZzylQO5ENrd/LHG06nqdtPZZ6dm2aNwaQX6PNHuOFPH+/HRM2pgo8a2NjsRpbhwTd3JJjWZ3t70ry3QfIcJtWsB78/U4oycZii9JTiLBufZw11W1vTqaeDGdm5iqI0HJOVaDrhNRTafapxL3zSdFC6h0kUkziGi2dX8NN/bOWeedUJIOLSbBsPXDUFz0CUEqsNixUkj813cO9rW9WtwkWz9sOBZYW0afVmg8gDV06m1x9J6m+W7zRxz5ot6lna0jkTePajxgFjkhmTa+WrZ5bwo79t4P4rJrPs5VrV2PzBCDaznlsurOS///wpnmAkybTSrSvTar5WjToAACAASURBVKDLG0pZZ/eTSyeiEyEshXngqilqL7XPo4a74/jnTcMJDT4SWS1W3K17ONzC53Q6mJG9yEGaZ2o6dRQzkHS1YPHj7r10otqqpMcXwmrQpcVQtfcH8Ick+gPhBDpG7NwqFJaTzuCcFn0C9DdG6DAbRBbOLFPrzwJhmfj2Z+9sb+fuS6q4O67e7J551QTCERbNKiPHYWLBHz5KMNt71mxh0awybpwxmv5ghEBEpt0dYPH5FaxcswWDTke3N6ySRRRZ5rYvjsVmMiScmd0zt4qHv3oamRZ9kmm9uqE5qa5txdwq9nZ5qch3JtTZxXBaFXk2HCYBQdAzreTzHZ0crImrpkEaRmjw4Uotyr5s3mEXPqfTwYzs8/s/Q9MhSxQFLqoawbjF5yTVgg0eN7U4MwHD9Ng7dVw1vShtRKco0XquJ96tS3o+PtKQZYX/rW3hthc2UplnT0l6/+uHDQnXxy/vSxMLCEUkdW2iAIFQBG9I4uG1u6jIc6Q0W6tRhy8sJSSJLJ0zgXvmVdHtDRGMyATCURhxSFLo8Ye575/bE8+8XtnMH68/nY7+UFJh8zVnlPDsxw08cNUU6jo8TCtx0ekJgFHPsx818IMLx/KLf21Xzfonl04kwyJQmOE8JVLuh7qtrSmqEzHZYziLsg9mZIVxPciSpCjK4qO8Hk0nuERRoCzXftAPj+IsG+NGOBOit4lFB6Z7TCzKSPqA/+WVUxLuVd/l5bYXNhIIy5xTmcdj/7crIYp77P92MW9KIRub3aqxOcz7I6BRLmvKVP2fXzEZs0EkN00/r5GZVjW6gv2tYh6/bhoRSUEnCiqMeOnL6XudtfcHue2FjUmwYllRWNfQR+2+9SycWUaPL8SIDAtZNh0//Fsb7+/pSRhfmmWhwOE4JUwMhr6trenU1MGMzE804UOTpkNSuugNSBvRzR6bT3munanFLnyhCMVZNrVnWUzxf5kLQpQAHw/9BSjMsLC4ppxxI5w89u9dfO+CCv7nqikEIhIKpDQYfyjCkpoKrEYxKcpbPLuC+s7UWZXuQIS6Ti9vbmllxdwqmnv96rh0Z17xW6ExxRpqxjIRrUY9TrOOW1ZvUrcc46OxvAzTKQX/Heq2tqaoTkRo8JFAgQ+mgxlZl9aTTNPhKl30li6iE0WB0hz7AWuhBv9lnsosrCY9kgwr12yhxxci22Ziw95ezAaRQlfqiKsg00KvL4TZIJBlM/Cba6fiDkTY3eHh6Q8a0m6L5jtM7GzrZ0e7h2BEYnpJlIv4wifJyRnL50TPvA7GcDyt2EW+08Bv/13HjnYPxdmWhP5iDouOwoxT6wN8qNvamgZ0QkKDDx8KfDAdjOzxgaIoB93QFASh6kQj4mtkj8+nBlM9FpxdkrAVuWJuFb/+9y41u/CBq6Zw4fh8/r2znT5fiJJsG63uIO3uALkOM5kWPSaDjpY+P7kOM6eNzCCCxOYWL2E5QkQS+KyxB5fFgM2kZ1kc//GeuVUUZ5np8kbo8kSJ+UUuK33+MEtfrlWZjqNzbJj1Op54dzcLZ5bhDUkJHQPiGY73XjqRacV2Hnqzjtc2t6nrb+zxaR/gmjTWYronDgYNHtLsgvCpoignVHajZmTHRsNV2yPLCns6vTR0e7EZ9eQ790OA4zmL+Q4TYVmmxxvGaNDR3O2l1x8hJMlML8liRlk2er2Izx9iY4ubXl8Yf0ji9hc34bIaueELpSq812wQ+cn8idjNOjbvizamzLMbqRjhoLM/SI7dgE7Q0ekN4TBHt/6MegF/SKLNHWJr635eYsUIB+GIgsOkw2TQ0eEJ4bIacFl1NPUGUGSBXR0eJox04gtKKsNxdLaNkhwL3Z4wBZmWE9K0tHqu4ybNyNLoYFuLR3wDTZ9fHa3ansEfjCMdZj5s6OaTAQDvqxua+crpxYzOsTG7Mo83t7cnkPJvG+jS3Nji5rl1TQmtX179zkxGZVpYU9vGsldqWTizTM2MvPbMYtXEIHo+dedLm/jVV05LwErdM3cCWTYTHf0hWt3BBOO7//JJjMgwUd/lS7jmji+NI89hpqk3QJcniM2k597XtnDzeRUUZpq48c+fsHBmGTc9uS5pm/E3105jZKbxuGbjpTMrrZ5L04moo2VkRx7WaTrpdDRqe1K1cPnu7EruemlTQrLF6o8bmTelkAyLIWFbMdNqTPhQXTmvmogk8fBbu2npC7Cny0uPP8SyV2pVgkcsTX5CgTOB3tHSF1Dr3mJjFs4sJcNqxGbSo9eJ/GhQB+dfvrGde+ZWq9ubBRlmrj2zGKtJz9bWqLH2+KLp9tefXcrSl2v50w2nJ6wlXjHKh1GfRYWsHBdzOJBZafVcJ4cGJ3t4WuuprT35/tAYKiX/aBmZplNQR6O2Z/AH45xJhaqJxeaLwXFlBRq7fSosOM9p5pZBH6pLX65l0awyFs4czdMf1GMxirQOWmdJtoWrpxfz7Wc+TTDLpz+InlNZjHomFTr573PHAAKBsExYCuELhVlSU0GRy4ovGKHTG0RR9r8PBRnmBARX/LwPrd3Jr6+ZSiAs4wlGWFxTTkWeI22X6uYeP/Vd3uNiDgcyq89jPdex2io9pluyg5I9zGYLz2wLIe7aNDz3GwZFKfkMaTv0sI1MEISRiqLsG/g2dLjzaDp5lec48tqewR+M6aKUkiwLVpMek07khhkl+MISW1vduKxGLptapLISX/ikCb0o8ot/bec3X5tKbbM7mmwxsM53trezfE6VamKx+R9+ayePXzeN1j4/fb4gt31pLI3dgYQ0/HvmVpNtM/DDOFrHzy6bSHOvX60hG4zgipnwo2/vwh+WKMm20OuLqCT+wXVz9146kYfW7uD7F447buZwILP6vNVzHaut0mO9JXsiFkQPp46kmvKD2BdDyWzU9PmSLCvs6fKwpKZCJc8PpbZHlhXqOjy8v7uTug6PaobxSvV9Q7efHzy/AV84wtgCJw+t3YnVqGPB2VGK/CNv7eL3/6ljwdklTBjpwGU10ueLpqv3B8LcM7cKs0HknMo8+tOQ5Nc19IAgUpJjQ5JRTSz2/LJXarEaDQmP6XUiz63by8p51eTYDCycWcbNs8u5eXY5BRlmdQvRbBBxmg0snVOlRpwtfQGeer+BRbPKeOxrU3n8ummMchn51qxynnqv7riZQ8ys4hUzq1g916H8zE9kDbWjQyoN/l2W5fQnLEdyH00H15FsLZ58G66ajprqu7zc/MxnSYSKCQWOtH9hyrLCW9vb2NjUpzaanFqSmVDo+uqGZu67fCK7O7wJGYBdnhA/v2IyT75XxzdnRQn2EUlRkVEQ/XB4aO1OfvTFsVw5vYiWPj/TS12sq///7J15eFTl2f8/Z/YtM5mZrCRMQkjCkrAHVCpUxVq0KCruLS7F8rbVQlv702qrVLCLS22lWltbq1Xr1vKq1VqXolZ9FRVUMCySEEgkhOzb7Ms5vz8mM8xkJpCEDNnO57pyJTk5c+aZmTznfp57+d7tpGmV/O6yOahUApKYvP4sJMJtL1Ty+6/Pwe0Tkxq7kCTxo7NK8QbDf2vs9LJmSQlTc9LY3eCMylLFNr5UCLDmjBI6PX6Uyvjnbej0snFzNQ+tnEeuRUN9u49NH9fxzVMnD5txOFrx8Vir5xqsq3SgO6wT7ZI9UaLBqSyyHkgB9fEYMjnBYxwTmZi9FSoWHqVLcV2bi6pGZ0KjyXNm5PDXaxbwTnULM/IsHGx3xzXB/M4TR2JZ65aVkW5Qhw1RMLmxMevUZJl1tHb78PhD3Le5iutPL6bJ2ckpRXZ+/L87kirtP76lFm9ARK9WoVcnN3Y2gyYqkaVTK3jg63Po8gTpcAeSxvYe/Po89hzu4umP6rj9vHLS+mhXo1UrONzpQ6dRctdFs4fVOBzLWPVXpmw0MFhX6UCTXk64S/YEiAanvsi6/wXURzVkgiD8juQGSwDSBz4wmbHCYCZmY5cvoVnlfZurmOuwkpmm5c/v1HD3RbO4u2dXc+Hc/ITzb39pJ49eM581Z5TgC4aSjqGu3c3U7DR++coefnvpbLwBMbqDanH6qW310O0N8NDKeWytbSckHlHa16kVdHuDiKLIumVl0WaZkWLr+zbHCwHvPezEEwjh78Oouv1B7ttcxYblYSP2x7er+eUFM7g5pk3MunPL+N3mvdy5YjaTs0aGcRhLxupoDFb6aqA7rBMtsXUiYmSpFAEeKMfakR2toliuNh7HDGZiuvyJfbgiN/tCuy2uxxj0nfjR7grwzNY6bjlnOuvPK4+m1sfurC5f4MAbENEohWg8RykQbaHy1/dq+cGSYnIt+viEjuXlKBXgD8Gmj+v448p5HO70oteo6HD72Frb2es1hYCwNmLSHZxRw+rFRZj1auraPSwtz2PptGxsRg3b6sJG9A//reampdPGdD+xkcpgXaUDXciNNZfsSOOohqwvnUVBEHTAuSkZkcyoYDATs8BmTDr5I4odS8tyqDzUeUwtxSyzlsvmO9h1qBOjRhnXLiaSQu8Lhg2TXqOKZgJ+c+EkJEGKigL/ZnM1151WxF+umk+by49SITAhXccHNa2kG9SsmOfg49p2/tjjCr3+jOKE8Sh7Xu5f36tJ2MGtX17OI/+3jzkOO7UtTsryLOSl69Hr1SwqyWSizUBTt5cVc/Pkm9owMpjd52AWcidylztUMbKjxcBSKQI8UPotUSUIghL4KnA5cBbwjiRJF6VwbMeFLFF1dFJd05Ls+sAxA+TBoMjLlQ3c2NPqpLeW4obl5Zxbnsv7B1rwBSREJLq9QdbFaCDetHQqj763nxu+MoVzynPxBvx8VNdFfVu4LssbDKFXK/EERFy+EEaNkt+/VcWl8wtw2LV0uEM4fUE8viClOWnUtnqi2ok3n11KukFLmyuAzahGq4I2V5BDnV7+/dkhrlxYhNcfJM+qp9XlpbrJTYZRQ5pejc2gZlFJlmywUsyJrgs7gTusfl9cb7FL5eetPq4nc7bUc8MxYmD9LVgeIgavtSgIwpeBK4BzgA+BLwFFkiS5h3KEQ41syPom1TUtR7s+0Ofkj2Q1Hu7wkJNuYMfBDvTqcKuSCel6DGolGnX43M8PO/nbB7VcNt9BlllLU5cPW48Ch0Wvot3tQ6tScXppFq/vaeKFT+tYWp7HLc99xjll2XypNIunPjjAlQuL8PiDTLTpUSnAblTzWb2T3/xnLzd+tRSTVoMnEMRq0KJVSTR2BwgEJVy+IEadCrVCIMeiprbNR3WTM9qssyQrDbtJhdsXfv356XocdpNsxFLMGJfQGrTW4mAYgfqMg9NaFAThIFAHPAj8SJKkbkEQ9o90IyZzdFItMxS5fmyx8ueHu5iem0ZhhqlP90okq9ETCHHHy3sSXIr3XjKbO17Yxc1Lp/G3D2q5tMKBJxDi1cpDfOPkIpq6vZj1KqqbnEzKNPHkB/uxmzTc9epu1i8v538e38Ypk2xcMDef/S0urjxlEtVNYaHfQx0eJmeZ0KtV/OY/e7nl7CkERYFdDV1MshswapQERZE2VyChI3WOWceN/9iRMN77r5iLxaBm5cMf8rdVJ1GYOepvpCMeWUJrfHKsZI9/AOcDlwIhQRBeQE67H/WkuqalscuL1aCJk2sqsOuZ7bByqMOLUavCHwphN2rjdmSNXT6e/qiOH501le+fWUJeuoH9LS78IZFN2w6y53AXl8134A2KXDbfgVKAhUU2JloNrH58a/R5blo6jcr6Ti5fMAlvMMh3FxfhD4pYDRq+e3oxTd0+SrJNfPpFZ0IpQJ5Fzy1Lp2DUqtnV0M3m3Yf5xsmF7GnsJteiSyiSvv3FnTxy9fyk7+eOgx1UFFjxBkQau73H/b6mirGiZh95HWNNQkvm2Bwr2eP7giD8ADiNcGzsLsAiCMIlwMuSJDlTP0SZoSbVNS3ZZh3XLCzA6Q/x3dOKmZKTRpvLz3ee2JZQLHzT0mlRt08gFOKbCydxsN1NhklLdVM3O77oYMW8idx89lSyzFpCosjO+i6yzFo63AHeq2mLGqNci45LKxxxbqVfXjADW5qONK2KaxdNYuVfPsQbELn/8jnct7kqbtfoDYTwh0KkGbR0uPz87YNafn5+WILqUIcHnUqZ9CbZ5vL3WWDt9odLBOzGExZHGBBjxRUXeR2fH+4aUxJag2Uokj1GgtDwkIgGC4KQI0nSYeBN4E1BENQcSfj4PZAxBGOVOcEMVU1LXyt5h9WA1ajl3v+E0+LXLCnmvepm7rpoFh5fEINWxV/fq2HZzLyo26fQbkSrVuIOhKLJHQV2Pd89rZgfxWgbrj+vnByLjvoOL/dtruLaRUXRm1YyrcObn/uMey6ahUYVitanAXiDIUqzTFy6wBFXGD3RZsCiV6PXKvnOl4u59rGt0b89cvX8pDdJu0nDHefPSFDsf2ZrHfML01lzRgneQHCIPr2hZay44mLd2b07c49mCa1BMwQF0cMtNDyUosGfCoJQCTwFbJIkqQN4CXhJEAT98Q9VZjgYipqWo63k69rd3PpCZXSXNCPPQlGGiX1N3dG2JuuWlREQQ1G3jwD4egqkIzfVZTPzotmIcETv8JGr5+PxHylA1qkVWA0apuemJW3L4g2GEN1S9Pxciw6bUc13TitOUM//6fOVPL5qAU5fiJ/1ciPua+qOpu7Hxsj0aiVTc408+I15fNJTG/bM1jq+d0YJEuGfH75y/lB8dEPOWFGzj1WaeXxLbVQ2bVFxBvMLbaNqdzkUjDfR4GMZsjzgTOAy4BeCIGwhbNRekCTJk+rByaSO461p6U+rj1yLjqsXFvK9pz5JKFi+/aVwbGntkrC47tbaDmp7xTf6Kohucfqx9MhUbdp2kJuXTsUXErnh79sTnqfd7ScrTcu22vboburCufl83qPIkez6/qDIJ3XtCcr6z249yHWnF3PPRbNw+cOCxFq1ArVSICBKWPVqTi6y0+bys7hkFq/vrMeg0/LDr0wZsUZhrKjZx76OiGyaTq3gwjl5486IjUeOFSMLAa8CrwqCoAHOJmzUfisIwmZJkr5+AsYoMwLpT6uPr5/k4Df/ie/AHNvWpKnbxx/frmFegZWfPPcZ1y4qSnpT7f17ul6NRiXww6+Ucu/re+n2BRPEgze+UcXqxUU4bAY8AZFntx7kB2eW8pv/7EUQjihyJLu+0xeMKuvH1rCtXVJCc7eXiXYjB1pdFBQaCIohfMEgH+3vIDfdgMcfJMeiY9O2WhYUZZKXrmd+wcjdEZxo6aRU4bAauOP8cn76/BGVlzvOL8dhNQz30IaFgcbIUin+O1hSIhosSZJfEIRdwG5gHjBtUKOTGRMcbSVfaDfyywtm4g8l3/FE2pqkG9TRFbQ3EM5MjI1vvLi9PkGCav15ZTy+pYal5Xk88n8HuP70YvKthqTPk2fR0+b04bAZaHf7efS9Azx8VQW+gMj2gx08/2l9Qjzl1mXTMWpUSBJJdSGvP72Yptp2Cu1GzDoVgkKFXgVleekc7vSQbdGxr8nJ2TPymJRhjKqWjFTGinRSXbub3/UskgQhrPLyuzfCOp4jdTecUgYQI0u9+O9gGSLRYABBECYS3oVdDhgJuxbPkyRpz/EMUWZ0c6xWH4UZerq9waTGTiHAunPLqG0J92KK6BTGxjeUCjilyI5SKfHI1fNp6vZhNajx+AIsLc9Do1LQ7vZzz2t7k0pH6dQK6js9hETo9ga4/bwy1v1zJ0ExLDz8zYWTuGy+g6c/qos+3/RcM10eP1q1ggnp+uRux5DIlyZnYNYr2d/sJiddgwIV+VYdaoVAi8vHXIeVsgkWVKrjafd34hgLAsGNXV5qWz1xnRiAURfrGyoGEiMbSeK/g+WoM00QhPeAd4Fs4FuSJE2RJOlnshGTiazkX16ziKdXn8TLaxbFpWxb9BoOtLgSGm+uP6+MU4pspOmUPPjfGgAaOtzR8xo6vTz8bg16tRK3P8iBZjfvVrdS1eTkg/3t/OKVz5lXkE6uWRd9zKZtB/nhV0rjnmftkhLsBg0v7ainttWN3ajhkWsqEIDvLynlL+/tZ44jndvPK2dqThrTcszU9cTo9GolOWZt0uaSsyemhzMQJXDYDLy8/RBqpYoCu4kFRXbOmTGBWQ7rqDFiY4WjNQOVGfsca0f2Y8KainIRtExSFAIICBxodSFJMCmjZ0dmN1LT4qTD7Y9LjkCQCIoSj/7f/mjblKIsE5JEVPxXIUCWWYsgQK7FAAg0O308u/ULbvzqNCZajWQaNBzq9EQfgyTx56sq6PIEEEX4ot3NX97bz/Wnh43ds1tr+f6ZpSgVAmadmnsvnoUvFCJdr0SvVtLU7WVGfjohKYRaKSEIEhuWl0ezL3VqBT+/YAa5Fi2Hu7w0O308seUA589xjLp40lhkrMT6hoqBxMhSXS92IvQYj6q1eJR+ZABIkrQmFYMaCmStxdQSDIp8VNtGTYsrrg4rtpg2VgA4tkB5bkE6ne4Ahzq95Fr0lOWaUSgE9re4qGtzYdAqESSBxm4vWpWSQEjE5QsnUdhMKqZmpfNhbQtapRKFIOD0hwiJIfRqNR0eP2k6NYc6PExI16FUSGSnafAFodUVoNXpRxRFrEYNOrWCA61ebosxVuuXl7OgMI26Nj8hSUSnUkXdmpIkodMo8fhDPPnBAb42M5+vlefKu68RwjCI+J5oUiYanJY9EYVKPahBHY1wLdjyoXJbDk5rEbnnmEwSRFHiX5UN7Gs+0u0ZEotp69rdUSMW+fvNz33GA1fM5bonP04wfpMyjBzscFHX6uH+N6v45sJJcQXSkV2RSaNAqxQQBIEvOjx0uPxMyU1DFCUCQYkuT4DH3jvA3iYn688rw6LXUFnvJBgM4rAbEIF0nRqnPxQ1YpHxPfBmFaolpTz5wQG+eepkPqlrRZTgxe31XDbfgVGjxOUPccm8Aq5/+pNwjdw4jMGMRMZCrG+okOvIYuirHxmAIAiOoR+OzHAwUK29A60ubtq0g2sXFWE1aPj6SQ4yTVoMWhX1HW7aXD4K7UYOtCTq3lkNGgTg9nPLaHH5eGJLHT989lOmfG8R/lAQpULBrS9UsurUIlrd/gRD+ZPnPuPpb53EvmYvHW4f6QY1NpOGmmZ3QqHyUx/Ucts/d/LYNxfw9IcHuHLhJNrcQbo9fgw5aTR2+RLGt2xmHvdt3svqxZPj3FRrzijh6Y/qWLesjOZuH96QOCoLh8cyoihR1+aiscuHyx+kwGaMurplxjb9yVo8hXBh9NuSJDUJgjCTcOxsETAxxeOTSTED0dqLGLy9jd1cu6iIrDQN13ypkHtf3xtXa9Xi9PNOdRNuf4g1S4oRpbDSBsCVpxTw3Zjd2A/OLOXR9w6wr9lJs9MXrU8TBBAlEoqSN207SFO3n9v+Wcl9l81BFCVCosTtL+6kNMvEd04rJihKGDXKqApHU7ePb36pCJc/wBftXkwaJYEQKBVCYqNMRdiYRdylEF//5vKHMGpV2AwaOZlgBBFpAVTV6IzbwY8E3cixIso8kjlWjOxuYBnwKVBMuDj6WuCXwB8lSRqxkt5yjOzYiKLEZ/UdbN7TFDU2kQSMl3tp7fU2eAV2PT87t4wDLS4y0nRRlfoXt9fz9QUOjDo1G17ahdWg4eKKfBw2AzlmHbsOddLlC8U91+rFRZRmpfGjf2znx0un0OYOUJKVRkOHG51aSYvLjyiFuzHbjRpKsk1c/qcPeeTqCj75ooM8i56/fVDLd0+fTDBEtFeYgIRKGZavcvmDeHwhWlw+9GpVtFFm76LnB78+l0++6GDj5uqE92vNkmJOnmQjJEno1AqauwPDfpOUCVPT7OT5T+vjdvBA0v/lE8kQizL3P0Zmy5Zmf/3mgV5/yHEePsDar5YPqkYtSZLIoGNkXwPmSJLkFQTBCnwBlEuSdGDAo5IZUSSbYBFZp4ZOb4LLLFaSKqIy/7MXd3JphYP/9494aaiCDBNrn/4koZVL5O8vbq9n5ckF0eeanGmipsWF1aBBq1bxwqcHuPqUQmYXpFPV6EpotaJTKSmw61EqBPIsenLTddx8zhQOd/nZ3+KKGr3CDCNmvYJMkxKFK1xrolUbovG5hk4vj71fy+rFReRZ9NR3etCrBWbnpyetS5szMZ1ASESpDKd7z3PYZSM2Qmjs8iJKySXNhtP9O2yizEMgGjwUDFZ4eCCCwXBsQ+aN7LokSWoXBKFqIEZMEIS/EN7RNUmSVN5zzAY8AxQCB4BLeq4tAPcR7kTtBq6WJOnjnsdcBfy057J3HC12J9M/kk2wiPvs4XdrElxmsZJUEZX5VacWJajNb3yjit9fMTeqadj7789srWP98nIOd3q5c8UMNm7eS7peTY0ocnFFPn/4b3U0ycPtExNcfPdtrmLGVRXccNYU9jR0kZtuoKnbxyS7kebu7jijd9uy6ejUOly+cDsVlVLBtrq2uJtdQ6eXjZurWbOkmFyLnnte28tl8ycmpN7/4oIZ5Fu1HOrwscCRgUajTPlnJNN/ss06lEJyybHhdP8OlyjzeEv2OFbecJEgCP+MfAGTev1+LB4FlvY69mNgsyRJJcDmnt8hrONY0vO1mnBX6ojhWwecBCwA1vXsDmWOg74mmFJB0vqb2ILTiJhvX6K+/lD45t/775Gd3P88vo2bNn3G6se3cXGFA7NeyeTMcGD+svmOaKbi1tr2PkR9Q3S4/IQk+H//2M6P/r6D/1Y1R2N1kfPW9xjBz5ucrH58G+/XtCFKJC2cnVdgZdO2Oq44qRCDRs39b4YN9ZolxTz4jXk4bFpu/t9K8q1G2YiNQArtRmbkWxIK8Ie7lkwu1D4xHGtHtrzX778eyMUlSXpbEITCJNc8refnvwJvATf1HH+sp/h6iyAI6YIg5Pac+7okSW0AgiC8Ttg4PjWQscjE05dW4pKpWczIS09wmRXajdy5YiY3bdoRPTfyvfc1ijNN3HvJ7IQmh8l2aOv+uZNHr5lPtlmHBKgV2hvgtQAAIABJREFUimj/sb6ur1eraHHFZzT25VbqdAf5yXOfRf/24vZEfcUNy8v5vKGL755ewtQcLW0ukXsumkWL049Rq0QUJX71771c86XJTMoYnwW2Ix2FQuCMKdkUZ5qY67Di9gdxjICsxeEq1A75fbTUVKb0OVLJQASD4djp9//t62+CIHyp/8OKI1uSpIaenw8Tlr+CcGbkFzHnHew51tfxZGNaTXg3h8MhVwccjb4mWDIjBuEbxdfKc7EaNOxp6OTWZdN56O19SZsYRmp5puWkkW81RF10SkVyY9Pq9OP2h9AoBVTKI4art4hwWNF8Bp2eQFLDlczouXzBuOutPLmAZ7Ye0Vec47CiFCQK7QZsRiV///AQZ8/MA42E1agmGJIIShJ3rpg97DdFmaMT1vg0UZgxcsohTqQoc+z9z2azccf5/TcEI4/+CwbDsTtEK4FLCBuOVyRJqhQEYRlwC6AH+v9MSZAkSRIEYcjkryRJegh4CMJZi0N13bHIYCaYSqXg1OIM8tL1NHS6uXvFLPyhEM9862TcgVBCavGkTBMTrQZKs000dHqxGjRJs8pyzDq8wRDt7gAdbn9cX6nHt4STMfLT9WSkabEb1QgC7G6IN1ybth1k7ZKSuAzENWeU0J7kehdX5EeTO7z+EPlWHXaTwG9fr+HLU3IozjLLBktmyDhRhdqx979p06ZJo1kEeKAcK0b2MOF0ezuwURCEJ4B7gLskSRqsEWvscRnS872p53g98XVp+T3H+jouc5xEJtjJRRkUZZqOefOOlQCakG6gotDGwsmZpOkTpW1EUaKm2clHtW0IgkCuRYegkFh/XnmcW3LD8nJmTLCgVoFRo6Ao08gd5x85p93tZ6LVwORMExoVeAIhzDoFU7LTovGQXIuOiyvyybHoePjKCm45ewqrTi3ima11FGYY+fkFM+KuV2g3kpGm4ZTJdkqz9aQbBQ51BPmfL5dwdnmubMRkZEYZx6ojqwRmSpIkCoKgI+wKnCxJUmu/nyAcI3spJmvxbqBVkqRfCYLwY8AmSdKNgiB8DbiecNbiScBGSZIW9CR7bAPm9lzyY2BeJGbWF3Id2dASSde/85XdLJuZh1IBC4vsiEhs6UmieHF7PTctncZZ07J5q6qJwx0eJtqNdLgCZJq1vLHrEF+ekg2CAqc3SGaalvIcMzqdCr8/xObPm2ju9uINhMizGpCAL9rc/PuzBk6bmsVEq4FWp48JVj37GzupKMrE5QvR4Q7wwFtV0XHNmZiOSadEKSiw6BWEJGjs9NPpCeLyBWl3+5lg1ZOfrqXZ6aex04dCIZBj0XHGlGzZkMmMVPr9jzlt2jRp9+7dqRzLcDDoOjK/JEkiQE8tWc0AjdhThJM1MgRBOEg4+/BXwLOCIKwCagm7LgFeJmzEqgmn31/T87xtgiBsAD7qOW/9sYyYzNBzoNXFna/s5tIKBxvfqMJq0KBXK3n6o7qoAfnx0mk8/O4+HDY9bl8AnUbF/zy+LU6Q96cv7KS21ROtCWvo9PDVaTl8WNtGq9OLUqng3n/viT7m5qVT+drMCdFO0zq1gh9+pZQFkzN5v6aNKdlpPPBWVXRcsQ0yQyGRdIOGfKueykNdCd2ecy26nsSRbgCaun0UZaTeBTTelB7G2+sdCXg8HrZs2TLcwxgUg1HLP9aOzE3YsEDYGk7u+V0AREmSZg1uqKlH3pENLe/va+Hd6lYefjcc47ru9GJe2lGf1IBMyTbR4QlyfU/hcQSdWsGqU4uizQ8jBuWkSTba3H50aiXX/nVr3GNuWzaNu179PO5YgV3PdaeXcNsLlVy7qAhJgoffreGcsmwumu+gpdtHZpqWFqeHqiY38wqsUYMaO5Y/rpxHhztAVZMzevzUYjsnF2Wk7H0cYqWHEc94e70ppt9vmNGeK53yrfWpHEtKOIZa/qB3ZNP6uNhEYPj1T2ROGNlmXVzWoSCENQl7p9NveGkXj1w9nx0HO5JmKApC/O+ZJi3eYJBOT5AdBzvjHjMzz4zNqE0q7BurWm/RKbn9vOnoVCo+qGnl2a0HaXf7WX9eGcVZBjz+UNKxePwhrAY1sffTVNf3DJvSwzAx3l7vSEGp0ZJRNHBZqNHKUZM9JEmqjXwBNsIxrLeA9YRdgTLjhEK7kfkFtp7dUDET0/VMy03DatDEnecNiLT3aCMmKwSNdQDo1Aq6vAGCIfjJc58lPObaxZPZ3+JMuE6sQd15sAObSce6f+5i7TOf8se3a1h5cgFWg4bb/rmT7DQDmWnJuz1bDCo63D4yjBqy0rTMzLekvL7naEoPxyKSQPP+vhZqmp2I4shPzD2e1zsSGY2fwXjgWOn3pcDlPV8thKWlBEmSTj8BY5MZQSgUAicV2qIuvdhY02PvhzUTIWwgss067nx1Dz+/YEa0GFmnVrBuWRl/eDverTgp00hTd7idSu+6MY8/yLNbE2vJKgqs0ZT6C+ZN5MaYAupYqa0H3qymqduLw6bnlrOn8ouY2NsvL5yBWauGNJiQHhYWnpRx7MzN46WvQvRj7QRHq4tusK93JDKaPoOBdIgeSgx6A8JxvBcDLYSOcKwYmQi8A6ySJKm651iNJElFgxznCUOOkQ2M/gTka5qdnLPxnYSb0urFRWzcXI1OreDOFTNx2PRU1ncxfUIaTV1+dh/uIiTCBzXNfOe0YhSCQFOXjxaXj5l5FnYe6uK3PYkYuRYdq04tJMeiJ9es5b9VLRg0SvLSDexvcWHSKinLM7OvycX6l3Zx+7ll3PS/iYKk159RzJ/fqeGxaxagUYk4/dDhCuDyBWlz+8mz6knTKhARWFhgR5+khCAVDPZm2Nd7P5zK7v1hNN38j8UI+AxS1iF6KHC21HPDisWDUrqP5SjJHoOOkV0IXAa8KQjCK8DTR7uYzOikvzebvtxE+el67rl4JjkWHScX2tnT2IUnEGJ/i5tfv7Y32k9sybQcqptccRmId5xfjkGj5I7zZ/DT58MGSa9Rcfere/j+ktIE5ftpuWaauvw8/WEdf1pZgVKRXNFDIcD688qxGJTsOeyh2xNgot1ISJKYbU/ntcpDPLW1nme+ddIJM2IweKWH4RKfPV5OpLJFqhlNn8FwiAa31FRSXl7eb8X6oeRYMbLnJUm6DJgKvAl8H8gSBOFBQRDOOhEDlEk9fQXkD7S64s4zaFRJY021bR5++nwluWY9KpUCtz/Eva/vpbHLS7vbzwNvVnP/G9U4faGoEYs8z0+fr8Rm1JKmU7Hq1CJ+fn45G17axbKZedwco5EYUb5vdfpRCLC3ycndr+7B6Q+yfnlikfVppZnML0zDH5RQKRR0+0I0d/nY1+zkh89u56mt9dxxfjllE9JT/fYmMNBCdBjd4rODeb0jkdH8GYx1jtkhGkCSJBfwJPBkj/L8xYSFfl9L4dhkThD9XWn6Q6GEeFWkh5k3INLs9DI5y4SzR9/wiS11/ODM0qjx6ktrUaEQkCSJh9+twXFu2VGV9Q0aJdVN3dH427oXdnHLOaU8cvV8mrp9pBvUfNHq4lCnl26vEoUAS0qz2Hm4i3aPH4ctg+m5ZnLNOsomWFCpjiVuMzIYLvFZmSOMps9goDGy441tweDjW0NBvwxZLJIktRPW83po6IcjMxz0NyBvN2p5Zmsdd180i6qmbkIi0eaYsecX2Izo1AoaOr08+t6BqEDvwsn2pFqLWWkaWl3hdPk2l/+oyvoH293kpOsxaRT8/oq5fHqwgz2H3XxQU8t1p5fg9YcoyTaDIJGuV1GQbkKnUzGv0JbKtzDljCUX3WhlVH0GA2is6WypZ9UQxLYGKvQ7lBw12WM0Iyd79A9RlNjf4mJ3QxdVTd3RGqxkMbJYmarehdCx54uixL8rD3PXq0fkrGblp7O/qQNbmpFbYjIZ71oxk9Om2Kms7yJNp8YXFKlt9bDxjb1cvXAS/9pRz5ULi/D4g0y06VEqYKJVTZcHurwhGrt8ZKVp0ajgwbeq+cr0CZRmm1AqBIrtYSMmIzNG6LfFNOcWSufc3r9OVy01ldxx/oxhiW0NkEEne8iMYZIlefzighnMdaTjsCWuNKMr0pw0vIEgFYVWGrt85Fq0ZBg1fLC/lWyzDofVgNWo5HtnlPDT54+k6t910UxsBjV/vqoCpzeISavCblKzra4Dj09k+8Eu9jd3sWJeuEOzzaDCpFVF0+sj8S+jRsGuQ25u++eRa68/r5yrFk7CGxBx+QIYdUq5AeY4Q5bCGr+MjgCBTEpIluRxS09hcl83AIVCIN+ip/JQN1f+5UO+99QnfOPhD3l/fzu/fHk352x8h//sacTpFaNGDKA0y0RIlNjV0M21f93Kt5/4mGsf28pbn7fg9okcbHezv7mLBUVZbP+ik7o2N74g0V5mkfHd+kIlHj9RIxY5fts/K5Ekgeue/ARREvAHSEhWkRm7RBZl1zz6Ie9Wt/L8p/X8X3ULwaB47AfLjHrkHdk4RRQlmrt9XLuoCJNWSTAk4e2Z9G0uX9J04tg2Lrf1MjC3v7iTey+exXef/IRdDV3R4xCWmvrRV6fS0OnB5QtiNWho6PRGMxFXLy5ijiOdOQVW3qlq4aRJNnRqgeaeQulYvAGRxq7kxzs8geh3pSAQkqQRlxYtkxp6i1pHdup3rpjJuTMnjLud2UCSPZyHD1BZeeLen8GIAh8L2ZCNQ0RR4o3PG9lxsBOTVolFr+H2F3dGJ39plglRlOImfzAo8q/KBm7atIPbezILY/EGRAKiRK5FR0S1R6cOK2ZcusDB6se3JmQ6RoyZRafGrFVR3+kly6TBHwrhCwgEQhJrlxTz7NaDccohdpMmaSKIzRg+bjNoCImSnBY9jmjs8ibV/rxp0w5m5FnG34JmAMkeOp2eJ/f4UVQnCgsMNWFRYIY8HicbsnFIXZuLQ+0eACZaDdzw93iJpxs37aBsgoXJWeHJL4oS79W0ctOmHeEUeK0qqSFRCgIXzs1HKcDuhg5+fsEMaltdbHhpV58SUgV2PRaDmm217YQkmJxpotUZiIutRWSw2t1+1i4pwaRVsu7csjjju+7cMkKhEL+6cCZatYACxYhMi5ZJDb1FrSOM1ILlVDMcBdHDiRwjG4e0Ov14gyIPvV3D7sPdSSd/dZMzKoq6v8UVp2b/p7f3cft5ZXFp8uuWlfHQ2/tQKqAsz8JZZRPYuHkvDpuhTxV8nVrBj5dOCxdTpxu4b3MVKoUQF1uLuB9vOWcaqxcXMdFmwOUPYDWouOeiWdy5Ygb3XDQLm1GNSadiUoaWbm+QslzLuHMnjWciotZywfL4RN6RjUP8IZF7Xz+isJFsd+UPiZyz8R3uvWQ2OpWCArsxet6O+i4uCoa456JZuPxB9BoVf357H3ubnNx09lT0aiVrnvoEb0BEq1Imvf7ciencc9EsREnCGxBx9xRRuwN9tVwJsnByBmadgtte2Ml5s/IoyDASEiWUCoFcsw6NWiAQlDh1sm3UFDrLDA0KhcApRXbuXDEz6jkYyQXLqWYgMbKhKIbuL6kqmpYN2TjE6Q1GjUVvxfmIK+9guzsqVfWXqyuobuqOO+/hd/fz7S8Xx7n31i4pYWd9Jw67MXr9+g43ty6bHnUvRmJkP3m+koZOL3+5qgKdWkGLy4dOrUCrVCQ1fHaTFo0S9jW7ueKkwrhatB+cWcqvXtnN3StmMddhlY3YOEWlUnDuzAnMyLOM/ILlVNPPGNnQFUP3l9QUTcuGbBxi1qujxqKh08vjW2pZvbiIkqw0qpq6MaiV/OHtGoDormpyVhrrX9rJqlOLEASYlpPGH/+7L/q7JMFj79eyYl4+Bs2RXZjTF0IBfaqBBESJDcvLuf/NKm5bNp39LU5uWjqVO1850nJlw/JyFAoJpSCwva6Vr83M58FvzOOTunZCIjz5YS3fO72E8tw02YiNcyK6juMtJtab/sbIhlPodyiRDdk4JNusZe2SEu7raZ3S7vajVyvJMmuoaoI/vF0TnyVo1OALBuMKnNcuKWZvk5Md9V3R60ZU501aVTQZY9O2g9x+Xhk/f3lXQmr0rT2Ga3a+hV9dOJNuXxCzXs3dr+7hR2eVkm3WY9QoCYoSmSYdP/tnJZfML8ATCPLAG3u5cmERXn+QX14wkzl5lhOqYi8jIzNykA3ZOMRhM1KSbWL14qJw8bMAJdkm5k200eoM0O72A0RjDA6bEYfNyBftLh67ZgHtbj9Wo6bH6Hwe51rMMmuxmzTYnGoevqqCD/a3cbjTw3WnFfPAW9VR3cVpOWYefKuaTm+AORNn4AkE8fiDdLoDXDbfwT2v9Wr14hG4aek0puYYMWq13HWRocd9ZB6/7iMZGRlA1loct8QWN2elhWWl6trddHr8hERocfrItegpyzUnddcFgyKb9zTS2OUl32rA5Q9hN6kBiZMnZeL3h6jtcNLQ6efjunYMGiUT0/WY9Sq0ahWtTj9GrZJD7W5mOcwEQwoCYghRDCejiCK4fEFsRg3tbh8hUWDJlCxZdkpm1DIEElr9b6xpy5Zmf/3mY57nPHyAtV8tT4iRpaJoeQiQtRbHK31NnthYQjAo8l5NK3saOrGnaaltdSNKsLuhi2anlzOmZAPh+rPGLh8uf5ACqwGrSUWXV8V3n/w4unv69cWzEUWJBqeTXYec3PzcZ1gNGr61aBK56VpUCiUuf4iQKKFVKZg2IY3Kehe3vlBJaZaJ1YsnE5IkMowaNn1cx1llEyjNNlJsN8lGTGbUcsI7Zfcz2SNZMXSqipZTiWzIxhC9jZbDauC13Y19Tp5IjdjOhk72NTlJ16tp6vIldGWenGGiutlJdZMzGlfTqRU8cMXcBC3EG/7+KYXfPhmXP8RvN+9l7ZISCu0GDBolzc4A3V5PXLHz+uXlPPtRLVaDhqXlufwoRiD41mXT+d0bVdy9Yha7Gp1UjPJWLDLjh95zUZJI2rx26ppFKUlMGW8F0bIhGyMkW/E9tLKiz8lTaDcmnP+Hb8zj209sSyhGnplvYX+zE08gxLWLioBw2v7uhi68AZFci44L5+Yj9Cwsg6KILxjipqXTUAgSnZ4gv3plDzecNTWh2Pm2Fyq566JZfH64O0FeaMNLu1h1ahGN3T5UcgxMZpSQbC7ec9EsWXUkhciGbIyQTMl+a21bn5MHjqwQZ+aZuXbxZLq9gaTn+4IhjDo19/7nyG7s5qVTKcoy8aOzSpmcaeJXr+ymttWDTq1gVr6Fbm+QW577jLsumsXv36rm0goH1U3JVUS8/mCfHaGVCshK0+IPySrmMqODZHOxqqm7X81rh4qBdoiOpT8iwiMthiYbsjFCY5c3wRCIUnLVjkyTLnr+zDwzly8o4Nev7eFHZ01Ner5Jo2bDS59Ej1sNGtyBEN96bCtWg4aLK/K5/vQSmrq9PLGlDlEkWrDs8QWjYq7XLipKev0ci576Dk/Sv82ZmI5aKWHUyKn1MqODZHPx2a0H+cUFM+IK+VOqOjIA0eDeHEtEeCTG0GRDNkbINusSDMGWfc1sWF4ejWNFYl5KBRg1YeHfaxdP5tev7eHSCgf3vLaHm5dOpdXtR5RAKUBhhpGuXju1C+fmc9/mKqwGDStPLoirDVtzRgkhSYy6HCfa9dR3evAGxKQqIuuXl/PElhrmOOwJCiB3nD+DDJOGw10+Ti+V42OpQm5IObQkm4vtbj9zHem8vGbRCVEdkWNkMqOSQruRey+ZHXVpFNj1XDK/gPvfrIrWbk3NMfOHt6qZ40hHr1bw4Nfn0ukJctl8B55AiMsXONCoFHHJHhuWl5NuUMdNzIgb8MK5+QlxrY1vVPHYNxdQYNez8uRCbv7fz7htWVhgOKIiEhnPvAIrCkHiK9MncOsLlVgNGlYvLmJypgmnN4BWJWDQCJxemiUrdqSIE55NNw7oPRdj6zEj2cIyQ4tcRzaGiK0N06uVXPrQlgRX3erFRVw4J49tdR385LnPuO+yObQ4fdHEioffrUl4zMNXVbD9i86o0Vq7pJg/vl3DtYuKuP+N6oRx/OXqeQiCgu/0JI6cXprBstl5/CTGrbLmjBKe2VrH+uXlKAUJl08iEBLJSNMSCAXRqlSU5hhJ18vK5amkptnJORvfSfjMX05RNt14oXed5hDtvgZUR7bw2g0pEQMOuxaXD4drUa4jGw/E1oa9v68lafJEaXYaIZGoUfmizRVV0egr4cLlC/HM1rqoXuL0CRbWLZvO4S5v0riWWqmMSxx5c28LAPdfMZcdBzsIifDM1jrWLillolVDt1fE6fUhAW5fEL1GwfQcIybZiKWcZPEcOZvu+BluzceQz8PlpYoUiQGnRvj3eJAN2RglmZ9ep1YwLcdMU/eRm1eHJ5hwTkIyhlnL984o4Z7X9vDtxZPZdaiT/6tu5sdnTyPPauC2mBjcunPL0CgF0nTx7sg397ZQ0+rihrOmUt3Uze3nleOwaqhq8jAlO400nUZWLB8G+vo/kXt4jW5UWv2YEAPuL7IhG6P05aeflGGMNrXs3Y8sWTLGHeeXMz3XwtRsMw6bAacvQL5VT57VwENvV3NxRUG0L5lRowJBQq1U0OHxcsf55XHFz9efXoJBo+DUYjs5FhX7Gr0oFYIcOxhG+vo/GY89vGRGL3KMbAzj94fYcaiTw11ecsw6Zk6woNEoEUWJf1ce5oa/f4rVoOGaLxVGG21WFFhYe+YUDneG42wGjYLFJeFkC78/xO7GLpRC2HXi9IXwBILo1SqaunxkmrWYtUrSDNDYEaCxK8DhLi+ZaTqMGiVGnQqLTokgSCgEAYWgYlKGvPsablIUz5EZevr9oRhs2dIbL78w1nZkcoxsvBEMivzzs0P87o0qls3MY29jN13eAMVZRiaYDagUsHpxEQaNkpyeti4TLDr8IYlvPbY1ujr/2bllfHKwnRk5Fj6obcWkUxGUJPY1e/jP7kOcOyufbbUdiBJUNXUzOcvEtBwjnV6RH/59e4LL6jeXzCYgihg1SlRKgUkZ8sp/uBnueM5oYTSVKYQCfiorK496zkgraj4eZEM2RtnZ0Mnv3qhK6AG2YXk5DruXtc+EXUkbzivj16/v5dIKB/taXNHUewgH/X/24k5+f8VcajucKASBmmY3OWYdD7xVxYbl5RxoccU9b4fLT5dHz6dfdCRNIth9ONy/rKLASpcnyIFWl3wDlRnxjLYyBYVCMeqKmo8H2ZCNURo6vVFFjVjDdOsLlfz+irmUZpm4dvFklApYv7yc216o5NxZeUmNz66GLjwBI1aDinyrnhann6tPKUStFHD5Qwkiw51ef5+qIiExXIfW7g7gDYTk7DiZUUEy2alUiv4eL2pDGlmlIyuzMJXIVaZjlFyLHqUieTq9oIDLTyrgxn9s57q/fcL/PL6NSysc6NUKdOr4fwmdWkFJdhrBUIgv2r1c8+hH1He4MenUtDoDUTX8yLXv21yFXq3ixe313LpsevR6kdqxl3bUoxDAalBj1Kjk7DiZUcHRyhRkhh95RzZGSTeomJWfnnRXpFMpuf3FnVgNmqhqvS8Ywm7U8IMzS/nNf450Z153bhlKAbQqFTf9b3hFalSruPWFSm4/tyzp5O72hrs8P/fxF9x7yWz2HO6K1o5dNt/BRJuBQEgkTa+Us+NkRgTHin+NtjKFvkSDDXoDgkKg81ANMOPEDyxFyIZsDBE7GT2BEE+8fyBBa/HWZdNpcfqT6iTec/FMzDoVf1o5DxHo9gax6tV4gyEEhcCqU4tI0ymxmTR4AyItLl9ykWGtijyrnoXFmdS1uSjNSgPglKIZqJUC6QYVOrWKidaRGyyXGT/0J/416soUkogGO1vqWbVicU+R9Mgraj4eZEM2Rug9GdcuKeb9/W3saXSy6tQiBAEUAszKt+ALiFxcEa+TaDVo8AVFDrS4cflDcQ00H76qgoZOHw+/W8OqU4uQCBusJ7bUJezgfnnBDHItarq9fk4pstPq8mMzalArQa1QMD3HInd6lhlR9Cf+pVAILC3LYeoJEv09XpKJBrfUVI7ZImnZkI0Rek/GZ7ceZO2SEu7bXMUDb1ZHV5DTcy3sbexkcqYpQdG+ttUNkJC5uONgZ9SwCQIcbHdHr/3oewdYvbgIh81AvlWPSavAF4LGLj87G5yIUtiAZhg1zCuwykZMZsTRX5kuuUxh5CIbsjFC78nY0Onlsfdr+es1C5CQ4laQB1o9ZKZpEhTtxZ7a+N6T2uUPxR176sM6vrlwEqsXF0Ufo1crSTeoEJD49Wufc+6sfFpc/uhjbEYtU7LNKXr1MjKDZ7TFv/pDwOehufqzONHgsRYXi0U2ZGOEvnogZaZpE1aQuRY91U1d0V2VNyCijPGQ9L6OUoiXsVp5cgF/eW8/y2bmoVTAXIeVQrsGXxBWP/4JNy2dxplTsnDYujjc6SXHoqMs1yK3YpEZkYy6+Fc/SC4aPLbiYrHIElVJGE0V/BGOFrAG4l5PvkXPm1VNaFUKnN4QnkCIAruO5u4ArU5fQozs1xfPwhMIRXUTC+x61i0rwx8SsRrUqHu8hSFJwG7Ujor3S0YmllEi0yVLVPX1B9mQxTOSKvgHalB7T0aH1cD+VhdVTU5ESeJgu5unPqzj1mXTkSSobnJiM2jINGvocAd58oMDfGtxMQa1AgQBjz+EzagmN12J2wddHpFWlx+DRolCATqlEqNOgccforHbz5Ip2fKuawQzGhdoMnHIhqwPZNdiLyJJE7E1Vp8f7mJ6bhqFGScuyHs8BlWSwl//t6+ZbXUdqBQKijKNFNqN3LliJi3dXhq7/dFd110ryjHrNHz7tGJMGhXeoIjHF8Ru0uANBHB5lXT7AoiSAk8gxM5DnTy79SDtbj93nF/OBIuWX7y8mxyzjlkTrSfoHZIZCCNpgSYjM9TIy+deNHZ5ozVWD79bw/1vVPPHt2v4uK4DUTxxu9e+UoIPtLqSnh+5UZ2z8R0u/9MHfO1373Co08d71c34giJ7G7uRJLjn1T0YtWrkCa50AAAgAElEQVTufvXzaPdmQVDw53f3gQSBkERjl5egKHHXK7tp7AqiVcG+Jg8r//Iha5/+lD++XcPKkwuwGjT89PlKBEHBxfMmcrhTVjkYqQz0/0lmdBMRDd6yZUvcl8/nG+6hpQR5R9aLbLMuocbKGxC55bnPmD0x/YSl3g60c2+yG9Uf/lvN6sWT2fDSrriC6KrG7uiO86RJVlY/vo0HvzGXpi4f6/6584iqx7IynvrwABNt07it53jk2hvfqGLVqUU88GY1LU4fWWlaciyjN8trrCN3gh5fJBMNHmtCwbHIhqwXhXYjpVlpg570QxWHGGhKcLIb1WXzHTR2ebl2UREAm7YdZMNLu7j/ijnRHmSCUIQ3IKJRKqJGLPJ6b39pJ3ddNIumLl9yzcaebMYMkxZ/UKQs1zLg1ylzYhiLKebHw1iPF4430WDZkPVCoRCYlmse1KQfyjhEod3I/VfMoabJSW66AY8/SJ5Vj8NqSHp+7xtVrkWHWa+Oyz5cc0YJj2+pRaVQ8NrOBu66aBaiKHH/FXNocwWSGiuvP8hEuyHp+6EQ4OcXzECllMhK08uJHiOYsZhiPljkeOHYY9juPIIgHBAE4TNBED4VBGFrzzGbIAivC4JQ1fPd2nNcEARhoyAI1YIg7BAEYW4qxzYpIzzpY5Xb+zPp97cMfRwiJMH/+8d2btz0Gav+upXXdjcmjdU5rAbuXDEzOuaLK/KjLsXIWDa+UcXFFfkoFRIr5jq48R/b+f4zn/Kjv28nw6RJqnyfm64nTaNi/Xllce/HhuXlLJmaRW1zF01dASadwEQYmYETkVh6ec0inl59Ei+vWTRub9zjIV4YEQ1urv6MlppKWmoqewqixybDvSM7XZKklpjffwxsliTpV4Ig/Ljn95uAs4GSnq+TgAd7vqeEweiqiaLE7oauIYtDHGh1seNgZ4JcVLIeSKIo8druRu59/XNWnVqEUgFTc8xJxzI504RGqeL2lz6Ou+6vX9uTIDB8+3llBMUQuxrcFGUaeOyaBTR2e8lO0yEoRPY1d/PQu7X863uOcXlDHG3IEkthxkW8MBSko/rjGJFgGMsF0cNtyHqzHDit5+e/Am8RNmTLgcekcNHbFkEQ0gVByJUkqSFVAxnopD/Q6qKqqXvI4hCNXV5EKXk/sd4TLnaF+cCb1QCsXVKcdCxapYJmZ2LMa2ttJ9edruaRq+fT4vRHd2gBMcTP3trHHcvL+ai2BVGCqiYnmSYtf363hnsvmc2kjPHnnpIZvYyHeKHakEberEVjViS4N8MZ1JCA1wRB2CYIwuqeY9kxxukwkN3zcx7wRcxjD/Yci0MQhNWCIGwVBGFrc3NzqsadlMYuL89uPciaM0riXHC/uGDGoOIQ2WZdVBoqlmQTLtkK89mtB5M2tjzQ5iIrTZv0ut0+kcv/9AH/7x/bCYREfMEQd/37c2786jRESaI0K41Cu4GKAivZZh0PXzl/3LqnZEYvkXjhQEMHI53Y+1/A3T3cwzmhDOeO7FRJkuoFQcgCXhcEYU/sHyVJkgRBGFDhliRJDwEPQVjZY+iGemyyzTra3X4e31Ib1zZlriN9UDf6QruRGfmWOD3EviZcXzqLLm8gOhZJCje2XD47D5NWmeBGXHduGX9+ex86tYK1S0podvootBn41YWzKMo0IYoSOxs6OdzpxaJXs7BI1k6UGZ2MtpYs/SX2/mfOLRybkk19MGyGTJKk+p7vTYIgPAcsABojLkNBEHKBpp7T64GJMQ/P7zk2YojNCottm+KwDW6Vp1AInDElm+JME3MdVtz+IA6bkUkZiRMuWUbaLy4IN7G89x87osfWLikhz6pHqZCYlmvg0WvCbkS7UYNBreT6M0oIiRJftLkwaVTMmJAebbuiUAjMmmhl1sRko5WRGV0MJHQwGlP1Az4PHQf3MVbV7nszLFqLgiAYAYUkSd09P78OrAeWAK0xyR42SZJuFATha8D1wDmEkzw2SpK04GjPcTyiwYNloMKjA5kgxzo39rkzjNpwHCwYwKLT4AtKtDr9ZJm1GNQCvlAIp0+ksdMXLXTWqRWsX15OfroWi17NlGx5xyUjM8JS9fv9hBqjWfr9ffeycuVKtFptKsd0IhlxWovZwHOCIETG8KQkSa8IgvAR8KwgCKuAWuCSnvNfJmzEqgE3cE0qBnW8K6+BrvL6O0H6c27kuQvtRl7ccYjH39/PPReXs63WyU+e/yzOWE3PNeENBHngreqo6xHggTeruGvFLA52eCmymWRDNkoZjTuIkUpfqfp5q0/G7Q+N2PdXpdVTXl4+lozYURkWQyZJUg0wK8nxVsK7st7HJeC6VI4pmbG4c8VMJqTrhqw1iShK1LW5aOzy0eUN8PnhLqwGDQ2d3j5T6yF+MuVadFw4N589h7vIS9czI88SN64DrS5u2rSDF647hf2t/qgRg/AkvO2FSh65ej5OX5BLKxxRKa5IMkhjlweXX2R3UzdzC2zH9XplTjwjbAcx6ukrVX/zniY2bq7u1/srLyxSz0hLvx82kq28btq0g7VLSvAEQhRnmcgx68hK0+KwHflH7O8/qShKvPF5I1WNzqRqGxFjlqyWJTKZci06Vp5cEDU+D71dkzCJIqLHXZ4QO+s7k07CSHp9bz3JjW9U8dDKedy4aRt/XDlvyN9jmdTT1w4i2QJJ5thEEqliu2GEs4nDseNk72/sPSErTcf+VifXP/nJCV1YhAJ+/H7/sU8cI8iGrIdkKy+rQZMg87R2SQkl2SbOmBKuDOjv6revAudY8d2+almyzToK7HpuOGsq1U3dXLuoiE3bDtLQ6U2YRFlpOr7z5SI6vQEmZ5qS1svYjGpaXf6kRq7VGT7u6/U3mdHBYIp95R1D30Sk4novQH9wZim5Fl3CAjTZjnjtkhJOmWTjgnkT8fiCiJLEF+0uCuypW1hIYihl1x6JyIash2Qp7Mlknu7bXMXqxUUUZZhQCLDncFecKG9fq9+jFThHxHd7p9ZHbjAtTh+/uGAGn9R1IErw4vZ6Vp5cEN3JNXV7KbQbqW110dDpITNNh1Gj4scv7WDNGSVx7sOfXzCDQEjEZlQnNXIqpQKdWkGhPbmmo8zIZqDFvuPVFdlf461QCEyym6I7KgjP2Sc/rOXmc6axt7EbpQA55vD7m0ymbvPuw1xcEZaEi41V51kMKYtDq7R6NBpNSq49EpENWQ/JUtgnWg1JDY8oQZvLR12bJ7rDinUTJlv9xhY4977JLCrO4MI5eXGTKXKDufOV3UljWc9srePCufk8/G4NmSZdnNvSatCw7tzp1LZ64uraJAmsBhVuf4iDbe6EGrW1S0po6HDzywtmUJyVlvo3XWbIGag48GhxRQ7lrnGgxrup+4hr/8K5+dgMakqz09h+sAOA5z+tZ0qOGYfNSG2bK+GeceXCoqgRgyOx6inZJrkR7RAhG7IeFAqBsglp/PbS2VQ3OSnKNFHX6upT9V2tVHDLc/GJFBvfCO/Wkq1+j1bgPL/QltQV+cNnP2XVqUVJY1kRTcV7L5mNUkHUbRlpCnqgJTz2hk5vVLZKp1ZQUTAXpSDwwFs1fHtxEasXFyFK4eLtPKueDJOGiTb9mF6Nj2UGWuw7GnQHh3rXOFDjHXHtX1rh4JmtdVxa4eBbj2+NW1je+cpupuakYdSoEu4ZHn8w6Xt8uNObsrpMMRhIzYVHKHJ+dQyHO318/5lPuee1vWx4aRcSJMg8rV1Swsx8C25/KOk/Z2l2WtLVb6TA+ezyHP56zQIeubqCf32vbwXyyA1GEJK7I5UKWDI1i6VlOTR0HnFbXjg33BT0r+/X8oMzS+PGfsfycg60uDDrVbS7/fzh7RpCMZfWqpR4/CHyLKNbqme8EynFOLkog6JM01Fv9hFXZCwjTXdwqNXqj2a8k1FoN7Jh+Qw2vlHFspl5SReWy2bm0dTtJdusZe2SeJm6Cen6pO9xKhvR5tjMY1YgOBnyjiwGV8zKqaHTy52vfE6uRcfdF80CJHLMOjJ7shYP9LFbm5Zj7vPGoVAIFGaYKOxHy5PYG0yy55njsDIjLyx/Feu2jBi+hk4vj753IOpWnJaTxh3/2k27288/vn0Kd66YyU2bdkSTTNacUcIvXt7FX65aIO/GxhGjoU/ZUO8aBxpHVCgE1ErhmAvLrDQdDpsRh80Q5+lod3pZd24Zt794RHzgjvPLU9qIVq/Xj5saMpANWRwFNmNSzcKqpm6Wz8pjctaRSdPXDWColOAj17/zld0JCRu3LptOUYYhanBi3ZbeQCj6GiJuRZ1awapTi2h3+7nj/HKmZpuZmm3GatCwtbaNkBjWYbxp6TRZyX6cMRp0B4darX4wxvtYC8uKAlv0fSubYObzxrBob0iEX76yl7x0LU+sOolWp48ci46yXFk5ZygZFomqE8FgJKpEUeLflYe54e9H/sF/+JVSZuSFV069g8wDlaQaKKIosb/Fxb4WJ/6ASE2Li6AoMjPfwhlTshMkquraXLQ6/exvdfHT548IAv/8ghlkGNVYDRqmx0ygVI9fRmYoSEVm5WDk5PpKvrpzxUy+Vp4bN69SlAna7wdPmzZN2r179/E810ikz9cvG7IYgkGRnQ2dNHR5Sder8fiDqJRKfvr8Z9S2evr8hxxKzcS+zjVoVARCIWxHURmJjL/d7cOoUdPuDpBt1sqrP5lRz0hYdEXG0ObyoVYqcPtDGDRK/CExQf0nReOVDVkfyK7FHoJBkec+rY9rbRJJc7/utGIsBg37W5zR7KTYKv5k0laxK7QIvc8tsOvZsDysUp9st9f73J+dV05jVxetTh8qpYBFr4k+JhgUeX57fdxO7I7zyzljSpZsxGRGPUPd3fp40vkDIQmrQU2z08c1j36UdNelUAg4rAa6vQH2NnbT6vThDQYx67SU5ZrlOTnEyDuyHrbXtXPpn7Yk+L5XnVrEw+/WsHpxEXq1EoNayfQ8M/ML7QDUNDs5Z+M7CY97aGUFpxZnxE2OmmYn1zz6Ictm5pGm+//tnXl8lNW9/99ntsxMJhOSkM2EBANhS1hEVPQH3Ap1LQoqVq1Xa6uX21sVql2sdQHXW63aurY/r9ttf61Cq1Wx1qpoq7ZuKLtCCJHEhJB9m307vz+emSczmQmGJZCB83698srMs57zzHOe73PO+X4/XyNZVrMecD2wIcSOm2O3cOlJZRQ6rTR2eVi9rpEuT4CV51Txp08a+M7/GcdZ1UVsburmoseTy79q6WwVq6JIew5mHFkoFOEvW5q54flNQxr6iw3bf9rQrYfcxDyYf/u+JkoAWnt7NerCn+rFcsXCKp7/tIGLTyxn8fSS/TFmqkc2COq1IEpTj3dQ1Y1YEPSDa3fQ4Qkg4q7nYB5Ve3q8NHQmugd3uP1895RjMRqgZJQ9STUk3qU4ppl42exyHnm7lh//aRP/9506LptdTo7dwso1W7lyzjh++McN1LW5dKmc5HKkdilWKNKF2OjE2Q+9yyX/8yFnP/Qur23dQySy7y/hkYjkX3UduhEDrZ3c89rnbG7q5v2d7dS1ufRjx879wvqmpLjRB9fu4PyZpfqxfcEILb1ae9va3KMbsdi6217ZyuWnVHDzi1vY2txzQNdEkYgyZFFGOzJSxnpI2f+/X9WjX4yzICt1HE5jt5dPG7oTGpvNbMQTDPP4O3Vsb+nbayxLgSODC2eVsmpdA1fOqeCa+eO5am6FrujhC0YIRSS+YIQvOtwUZx/6WBWFYriJRCSbm7qHHEcWCkXY+GUXr21pZuOX3YRCiW1sV4ebdfWdCW2vONvKRbPKuOjxD3RDuWbTbkKhiB7DNpi8XFmujWvmj6c4W3sO2C1GIhFJU/cgL8ZoGq7D/YLp9Xrx+/3Deo6RhJoji1KUncFt51ax4uWt5NgtXDirlDE5djpcfm48cxK/eacOq9lApsVIYVZ/fIbRQJJaxx2LqrEYBUajIUEc1O0P69tBajfefIdmeHyhMJUFjpTyVAYDelmsZgNWs5GqYid3Lq5OmiMbzlgVhWKo7M/QYKw3tG1P75DiyAabJ44fxotpnsa3vZiIQLyhvOH5TeTYLZiNghy7hYmFWSlV8DvdAZ54t47lCypxZJiQUivzwHMAlOfZEMAPT59AflYGkYgcNoeVPZ29rF+/ntmzZw/L8UcaypBFCYbgj+saeOqKWTR2+bg16vRRnmfjp2dO5tKTyhhX4MCAJMdh1vdr7vHx2/fr+cWS6TR1e6kscHD7K1t1L8d4cdD4gOvnP2lMGR/W1uejPNdOY7cXi9GYUkXgviXTWb6gksYuTS8xx27GZDKweHoJlQUO9vT4VKyKYsSwv+7osd7QVXMrhhRHlmo47+YXt1BZ0K9pWOi0smZjk+7ItXBaCWW5tpSGcl19J2dUFXL5yeXc9/o2bjxzEp5gOEkFP8du4cG1O/jVN2cghOD61RuYUOBg5TlVrIwGQZfn2fjevPH8KE44+P4LZ3BW9fCIMxtM5q/e6AhCPeWitPb5WFffw6f13boRiw05XLdak626btUG6to9tPX2Dy0WOq10eQJsb+mjdJSNq//wKfUdXqBfHDQ2Hh4LuAbNAP7ug3qWL6jklxdNZ+m8Ch55q5YrnvmYv2xpJjfTjGcQjTaDAUpzbPiCYUpzbEwqdAJgMhmYPiaHM6qLmT4mRxkxxYhgfyWmYvPPsZe++IDkVAHMQ5knHpuXyQ1nTuatbXtYOm8cT75Xx5dd3pTD8uEIeKKjKPUdXvr8oYQRFV8wwi/frNGH+oMRmSBd57SZ+PWlM7lm/nh+ePokbntla8K+P/zjBna2ufb1cipSoJ50UXT1gFBkr0MOD67dgS/Un+snphKwZmMTYSn32pCOHa1tG2s0XZ4A5XmZ3PjCZh5aW6s3xBue3wRSUJidet4u22ZmtMPCSRV5nFWV7OavUIwk9lXbMEasTcZe+q6cU8GyBeNZtXR2yt7cUOaJY0omtyys0p2tUhnKZfMreWVTE20uf3/7j3s2xNcjloapLMeml/mqeeO4fvVGXP4wT7xbR80gc+JftO+fXqQiEfUEjBIzSDHNQmBQXbVA3ARyrGE8fcWJ+oRvPPENKbbtq8vm8tzSk1i1dDZ1ba6U52hz+Wl3BVI2MG8wTHG2TfW6FGnB/goTx9pkzJg9+V4dk4qcusboQGLzxAlC2SnmiQ0GkdBzijeU914wlSvnVOiSbSWj7AllT1UPg4C7zptK1THZjM3L5O7zpuqK903dHpbNr0x4rsTvO3DZweJoU79Xc2RRYkZmSrGmXn/jnzcDqR0yynIzk/atyHdQlmP/SoeL+MDOSETS6w2lPEdJto336zp0r8VYPrFV6xr4xZJpSWVQKEYq+ytMvK86kPsyTzxQvzFmKFctnU1Znp0LZmr5ASMRqbfp5z9p5PrTJvDAGzUJ89pj8+ycUJarn2dm2Sh9uNLlD7NmYxMXn1DGLQunJMSNLl9QidM6PHNZR5v6vQqIjiPmWeUNhnD5wrT2+clzWHjg9W2sq+/Zq2pHjEAgzKbdPezp9VHstDL1mGwsFuOg5xwsOPP0yYW8XdNKU5eXn7+2TV937wXTOHsv51coRiIjQWJqYHmG6oASCkXYuruHph4veY4Malv6MBkMZGaYGJVpZkyOjTE5iao879a20tzt59f/qOW7pxxLhyeAyWCgIj8ToxA093gZnZXBmZOL9vp8GIAKiB5shTJkGrEb+6n3dnLB8WUJKRduO7eKYChM8Sg7zd0eikbZ+FplAQ1dHlp6fWRmmAiGIgQjYZq7/dwYF/3/VYoBuzrcdLj9WKLabTHX5EhE8u7OVvzBCKEwuP0hMq0mzEbBqZUF+3LzKxSKFMREuRs63dgtJgqdWoqmVIbsX3UdbGrspiI/Eykh35mBxx+mrc9Ph8vP+EIH8ycWAvBFu5v6DjdZNhNmIahtdyeN0nj8IYpH2VgwqXBfDLoyZIOghhaj7Opwc89rn3PHomqW/u6TBAePFS9v5d4l07n6D5/qeYYG9qJ+dtYkirJtuhGL7Xv96g1MvHaungImZrzaXX7a+/xsa+kjIrWYlKml2fqb6uamboIh+KLdk+Duu3xBJYVZvcwoU7JTCsVAhhqvFjNi2/b0IoHtLX14A2GmDsgsEYlIXt3SzE/i2voNZ07CYTXxaUMXEQlrNjbxvX8bT2O3my1Nfdzz2ucsnFZCttXItDE5KUMCnr5iFve/vp1xB1E/Mh6v18sHH3zAcccdd1TkJVPjU1E63H6umlNBpzuY0vkiNnlrt5hodwd0I1acbeXKORUUZFnZsrsn5b4xqapQKMLfa1r4bHcvHa4A7oCm8vHIW7X833fq2NHioj7qktzc48NkEEnuvg+u3UGv7+iayFUovopIRFLb0scrm3fz0oYmrl+9cVApq9joyzcefper/7CeH/1xI5EI/LO2DYHgHzWtukzVF+1u3YiB1gaf+dcX9HlD+gvod085lt/8o5YvO316mpdXNjURisC6XZ0pnwmtfQGumT+eDvfwqG+09fm59rGXWL9+/bAcf6ShemRRzAYDUkpyM80pnS9sFhNWs4GJhQ7aXD7diF02u5yH3trBbedUpYzm12RrTJrUzu5upBTUtPZRWZClK+1Dv5GaVprNsfkOirNtNHR6UjaCgcsUiqOZVPNdy+ZX8rsP6rl+9QYmRYV8Y8Ti2uJVOvyhMN/72niu/sOnCdMCtgHtORZbGh/YvHxBJRefUEZTl4eF00p4a9sebl9UTa83SH5WBj87axLFo2w0dXt0548Olx+nNZMM4/D0JYyWDLKPqRiWY49EVI8sij8Uxh0Ic8tLW5Jc3lcsrOK3/6pjxcIqHn17B/kOK+V5Ni49qV8+Kttu5oOdbdx+blXCvnedN5XCLAv1HW7q2j1c/YdPeWhtLTtaU8eVuHwhQHMlzrGbU7rsqizOiqORSERS1+ZKEvZNFXD90Fs79EDlgfFq8YLcT77XPyLS0usnx27Rj3H96g1kZpgS2uBgsaVjcuxkWc0UOy1cMLOMW1/awpedXq54+mPu/us2fvwnrdcXG4Ysclpp7fHiDYZRHDiqRxYlGJb6MN5rW5q5d8l0fIEQ5XmZ1He6OKkin9+8U8vCaSWs/7KbuxZPpcsT0F3j8xxm/mNuBZ5gRJ9HMwgwG6C+04PdYuKmuPmzwXpvsYZkMhk4sTyXn58/jZ++0D8+f/+FMxg3DGPqCsVIZm+pVwYLuI4FKtvMRl3XMBKRhMKSC2clG6Q7XvmMK+dU8OjbtfqyQCic4HJvNKSOLUVAt8dPZaGTbz/9EVfOqUgpL3flnApuW7OV+5ZMp6Iwi75hmiYI+r207NxKIDBxWI4/0lCGLEosQLI428qZ1cX8JG7o4LqvT+CFTxtp7vFhNEA4At5AGJc/zJPv1eELRsi0GBmTY+fGFzbrQxYRYGebm9kVuXR5EufeUmktasHOIX0bi8XIudOPYVpp9ohxWz6SOJg5rhRDY3/Fg1OlXokNGw6MCYP+QOVbFk5h2XPrueHMyZxZVcSuDjc3v7SZa06tHNT4xR+jyGkjw2zQX04nFWWlPNeeHi/3vV7DL5ZM048z2PF9wQg1rX14AmEq8u37eyn3TjhEyNU5PMcegShDFiU2jJdq6OCXb9boCTYnFTm557XPmTM+j2ufW69vl2u34PaH9CGLeAM1rsBBVnSIIj4Ac9W6Bu5dMp2alj492PnJy09IKNfBzoyr0NhfIVvF/nMg4sEDU69Av8zViWPzkgKub1k4hUJnBg+9qekkxoxeS6+P+g4vvd5gSoOUGQ1riZWtqcdDtyfEQ2u1XlpxtpXrvj6BX75Zk/Ci++R7u/AFIxRkZSRMLQw8fiwtVDgCt768hScun3XQrm88ZnsWJdPnYrFYhuX4Iw1lyKL0eIPcunAKewYZpjAa4I5F1Tz13k6WzhuHN5go6GvPMCEEKYcsaltdvLShKakHdu38Cdz/+jZdKf/+C2cog3WIGEzIdqBjgOLgsb/XPFXqFeiXuYopgEy8di4NnW5MRgNbmnp45K1aPXtzzOjFem+BcCQp/dLyBZWcODaXJy4/nop8BwYBL6xvQtB/7uYeH8/8axdL51VQkm3DnmHi7lc/p7nHh9VswGzUjOjj7+xMUvKIKe7ffm4Vv3xTO6/LHxqk1op9QRmyKPlZVuraXEwoTD10ML4gC4tBcFJFPk6riRy7JWG7pm4Pox0WKkY7kgxhREJ9h1fXc4vJTfV5A6w4pwqDgLLcTDW0dQjZm5CtMmTDw/5e8/jUK/EvgvdcME2XuTIYBOMKHIwrcFDX5uI/frsupdEbm5fJPRdMY2ebiz+ua0xoj799v55josLDFfkO3t/ZTkQmTwN0eQIUOq089o9aFs0o0Y3YsvmV7O7x0ecLsmhGCaMdGSydV4HJYGDs6Ex2d3tYNKOEbLtF3yc38+joMQ03ymsxSlWxk6JRNjpdfpYvSPRavO7rWs+pts3Fk+/VkZNpoaoom7vPm6pv9+xHDRiFAac10csJ0AVDm3t8PPp2LY+8VcuT79VRVZJN8SgL8yoLtDdAZcQOGfsrZKvYfw5EPPiGMyfruqPLFozn8ctm8Y3q4pRtJl5sOHaOmLajwSD4RnUx/2f8aLo8Ab09Pvp2LV2eABZTv8h3odOKUWhZKmIvodfMH8/SeRW4fUEuPakcm9nINfPH60LDRU4rz37UgNVk5O5XP8NqMvLY32tZ9ux6fvXmDmxmI3VtLs2jefFU7ObhUegJ+r10N+4clmOPRJREVRw+X4jNe3qIRCSBsKTHG8QoBF92uinKtmG1GDEKmDsuH4vFiM8X4v36TtY3dBGOwId1bVx32kR2d/v0GDGr2cDDlxxHICT54R/7x/D/+7ypVJU4GJuTpeSmDgNqjiw1w+kAsy/XfGA5ynLsNHR5BnV6Gij35vaHcVg16bgeX5Dy3EyOHd2/TyAQ5qVNu/V2Wp5n49aFVRCk9bIAAB+oSURBVATDEZw2E8VOG2Ny7Px9Ryv1HR5+8bftepnvWFRNZUEmYSlx+8N0urX5NiFgXsVoNuzuobHLS5Ezg5CM4PZFqGt3YzUJJhY76fOGGJ1lwWyUTC3OHRatRUumUz724ANcdtllR5Kyh9JaHAo+X4hNu3toc/kZnZVBa6+mrtHh8pNls5CXqaU+t1oEVUU51Hd6dImbTrefklE2PIEwjV1ecu0WMq0mcuxmji/N4d26djY39ZBtNVNZ6KDXGyI300wgHGHOuHwlAnwYGGlCtoebQ2Hch3LN97Uc8Tqp580ck6Qw/9v36+nyBPRjgDZf1+MNEIlApydAny/Ez+I0UpcvqKSy0MG8cfm8VdOK2x9ktMPKnl4fLl+I8jwrFpOJXm8Itz9ElyfAxGIH7X3BhJfY2xdVM6XIQbc3hMsfIhSW1LW7CUcijMt38PWJ+dhtQx5eHPKPYM8tlG+9+hKzZ88e6i7pgDJkX0UgEObFTbv17NCxMe+3tu3h6lMn6MMOBgE2i5FAMEJ9h5viUXb8IS1Ts5QRdvcEeGhtDQunlWA0wORiJ0XODO76y2dcPb+Stl4/t76cKEg8vdTJpOJRw3g1FIqvpq7NxdkPvZs0t/TqATrA7GsvL74cxdlWzp9ZitEACyYVMrUkO2nfujYX33nmI244c3KCM0ms/LHYMKvZwF+uncv2lr4EI/mbfz+e7/2/T5L2WzqvggWTCrjjla1cfOJYbn6x39Dddd5Uip0WtjT10usPYxRwwthcrkoxN/frfz+elS9v4aJZZQlzfMsXVDL72FyOK88d6qVUhmwQlLNHlM27e3QjBtok9Kp1DSydN47/+v0n+s234pwqCp0ZbO3oBSH4cVy82Z2Lq3nuo/qkG/au86Zy6UljcfvCuhGLnWPFy1t5+ooT9lY0heKQMBwOMPvTy4uVI14CzheM8Pg7dSn3ben1sXBaCdv29KYs/9g8O9fMH8/znzTS0JnoOTmhwIHLF0q5n8lgoKXXz9K541m2an1Cu73pz5v55TdnYDUbefpfWo+vIj/Z0csXjLC+oYuF00pSKoJUD5P7fTgYYMuWLUnLj1QRYWXIojSnaMQLp5XowxSg3Xy3rdnKM985AXcgnCToe/OLW7h3yXQ9mDq2/KY/b9bddVPd6B3uwCGooUKxdwYLLD4QB5jBXO7jM0IMVo5UMZ2p3PWLs62U5dpod/lTlr+l18cT79axfEElWVaTbiR/MH8cJrOJHa19KferLHBQ5Myg0xPkqrmabuHzn2jCCL5ghGA4TGmOnZ+dPZmGTjcZJkPK44QjWrb5eG3H2LG8geGRqDIYDPxhWwBD7WZ9Wc/uOh7+PkdaLw1QhkxntCPRnT7WOFIZnva+AKU5qdfFVPIHLo9ILdYs1Y1e5FSecorDz/5mct4bg/XyPt/Tm+B8kaocjZ1u3T0e+o1IfA8xEpF81tzH7m4vmRZjUmzYLQun4LAYuWpuBc993MC00mzK82x895RjGe20srGxB7vFyF3nVVPf4dEV7cvz7Dz53k4uOWmsLi0XL0ZsMQn6/GF+8nz/utvOmcJd503Vty/Ps7HynCp2tbuZWJxFcbY1af5u9DC535vtWRRMOHoyRCtDFsWRYeKORdXc8tIWcuwWLj+5nN3d3pSGJz8rA4lMuS4WhzJwuUHA/7yzkxULq7jtlf45stsXVTPtmOxDWleFIhWxwOJJy+YeNAeYwXp5NS19TCl2phyyNBgEp08u5JXNzTzwZr+24nVfn8AfPqon39H/4hevZH/Lwsmah+GS6fiCYfIyLdS29mnSctF0K6FwhJXnVNHU5UHGTbl0e4I8/k5dgmfi1yYWJuij+oKaXuLSeRVMLnJy3YCe5oo1n/HEt2fqRjjTamblmq1cNKuMD+o69ePHtn9w7Q6e+vbwDC0ebShXuSjeYAhvIMTjlx3PinOm8ODaHaxe15ikhH/Lwim4/UGCoUjSutvOreJ3H9Rxy8IpCcvvWFTN+AIHNa0unv2onvuWTOfhS2bw/648kcXTjlHu94oRQ0wSbXbF6IMS21iWY+eORdVJcZk2s5Galr4EFft46js9ulg29EvF3Xz2FL7o6N8nvsfX6w3x4NodXPvsem55aQstfX5+/1GDrm7vCYYZZbOwq92N025hU2M3EQmlOXZ++/6uhHPd8tIW8rMyUvYmJxRmEZFSF/iOX2cxmrh+9QasZiPZVjM/On0S/lAYk8GQ8lh9vuFR9gj6vdRv/pD6zR/SVruZ9rot9OyuG5ZzjQRUjyyKLyi5+6/b+MHXKykdZdflaOLVOCYVZvFllweTENgzTElKHflZFs47rgyTUfDUt0/g8+ZeOj1BHnl7B/dfOJ3HLzueLk8Qp82EyQgzy3KPandvxZFPQ5eHLrdfF921mgxYTQb++7Vte3X+qO90p3zwd3s19/aYJ2X8fNrKNYmOVLet2ap7LMZ6QFNLsjkmx05dmyuhBxYbMoyXtCoapDf5eXMfT75Xp7v2x/Ypz7PR0utjQoGDDLMxIWfZL6MB2gOPlTNcyh7hEKHuFlztTVx5wTyqq6uBqRx33JE53Kh6ZFFinksufxiDAf0NMqbG8cS7dRgMguc+bqDTE8BsEElKHZ/t7uO/fv8p2/f0sbPVxR1/+ZxH366lvsNLMCwpzbFT6MygNMfO7GPzlRFTHPG09Pp4+l/1WE1Gnni3Dm8wohsx6Hfg2BXNjB4j05KskGM1G7CajbonJfTPpw2WXiVezV5r3yHC4UiSo1Ysf1n8uUKRCHfFqffEDN4LnzbqhvHCWaX6upXnVFHb6mLpvHGsGOCd/PPXPk8aqVk2vxJfcHh6ZGZ7FuPmnkvJ9LlUV1cze/ZsZs+efUR6LIIyZDoxZ4/nP2nUJ2IHDik+9d5OLj2pnGNGWQnJSNJN+fsPG7CaDUw5xslj/+iXh7GaDRQ6rQd1yEahSAcKndYEiaeyQZykBia/LHRmJLXB5QsqaezyJHhSxub1/q0yP6Xhiw+TtZoN5GVaEEKkLEMsWXOsPXsCYXLsJq6cU8E9F0zlyjkVSb22yoIs7r1gKg9ffBzeYJjV6xqJIJOOX9/hpc8XZOm8Cu67cBr/c/ksVq1rYB9CwxR7QRmyKFk2I3csqqbLE+BXb+ygKNvK0nkVXH/aBO5bMp28TAvXzJ/A2LxMbBYTz/zzC645dTz3LZnG0nnaDd7lCXDbuVU4rEa6PJpL/cHw/FIo0pVYjymma7i7xzskvcWy3EwqCx0sndevb2g3G3nu44ak9mQwCKaXjuLOxYlzcbefW80rm5r077edW0WBM4MJBY6UZRhfkJWgmzjKbmG0w8qT79XxZZeXJ9+r041YbB+Axm4vvf4gLb0+ujwB8qKC4gOPP6EwCwCTQfDgm9u5+mvjycpQszsHA6XsEcXnC/F5azeRiAFXIEQ4EiHTYqbXFyTLasIbDGEyGECCRNLpDvLTaBLNC2eVMj7fgT8UwpFhYWKhjYg00u72K+kjxVFPvCxVkdPKZ819uqfhhbNKmVCQxeRiZ5I7frwiiN1iJBiOkJuZkVJn8Yt2N7u7PZiNBnp9IZw2EzaTgU5PEJc/jNkgsGUYOHnsaGra+qhpcSVIUt2xqBpvIESGyahLyx1Xko3FbGLNpt38am0NF80qY9W6Bl21Z1Z5jiZh5w7S7vJRMTqTPn+Yd7bv4cSKggQlkNsXVTMmJwOjMNLjDZCTacEXCnF8SS42m3mol3LIDxFbbqGccemNuPbsYvkZ1dE5sn7SNDBaSVR9FX1eHxubemjtDSbc4LcvqubRt3foOcPuXFzNrPIserwhen0Rejz9WmslOXbyHCY1/6VIS4ZbMDh27OKouvwXHR7WN3QRkbBmY5OexXkwPcVUZRuoHFKeZ+PGsyYTCEXY2eZi9bpGujwB7rlgGmdMKuSVrc0891E9l540li863EQkGASML3Bw/+vb9Xa+fEElJTk25k/I4587uzAZBdk2M/Wd3oS4sngtx7vPm0pxtoXdPQGe/XAXl59SgS8QojTHTp/fT2tvkDaXX49Vm1SUxSnjc8m2DTmOdOiGLDtPVp+7FICswjEYTP3GUguMXpSOgdFKouqr2NXhIxBCN2KgReJ3uPz86PRJgJZz7OG3dnDfkukgBFuaepMS8zmtWezqcKucVoq0YjgFg1MZmx+fMYmalj79of7dU47lntc+Z1JRVlLbSVW2ey+YxtnVxTR0efTlxdlWLppVxg9W9Z/n1oVT2NHqoq7NxfZcOze/uIUHLpzOPX/bxsJpJQih5Qu8//XtLJxWkuDhuHReBcdka56IBoMgGJZJcWUPrt2he0b+7M+beeLyWTwU7b39JM5r8b4Lpyc4ngC09fmp7/AyrfTgCyLEnD2OFpQhQ2soLn+IDV926zfptBInl84u172PYobqu6cci8sfxGgw8ODaHQmyM75gGIvJoJIzHgSGs3egSCQSkWxu6k4pJZX3nRPJz0oeztsXBspUXXHyWL7s9CS4vy9fUMnFJ5QltZ1IRLIlRdl+8vwmch0WDPQ7bsRLWsWM2nVxxm9Mrp0JBQ6MBpGkh7psfiWGuGmtmNZiu8tPKCLpdgdo7fPv1TPSF4zQ5vKn1FXc3eUhLEmq83BJVB1tKEOG1tC6vQE9nXqO3cIPvj6B7//h06S3r6XzKphU7KTbGyDHbkkQNY01llnlOYe5RunNkZIrLB2McexaDya4+25tO0+8m1qsd6gMlKkqz8tM2bbuWzJdd/qIzXt93qylSUpVtj09Po7Ny9Tjs7SXyWSjFtv+5he38Mglx5GZYUpa99BbO3jsWzO5+tTxCKH1EqeXOhllMxMMSzo9QaD/+XD+zFKyrEYt5jQU5pr541mzsYljsm180d4fA1ecbeXyk8uZWOzkP3/3SVKdnxgm0eBYQHQqXHt2sWXLvv+OI3leTRkytIaWl5lBzZ4veexbM+n2BvGHIoNqJna6/ThtZi6clbqx/OXauYejGkcMgwnNDhSLHcmkizGOXeur5lakDNiV8sCufyQiichEOTd3IJyybRkMmhJIJCJ5a3sLmxp7iEg4cWwO5Xk26ju8CWUb7cigzx/UpeViywcatfhzhCKSbc2pjXYwHOHEY3No7fXT4fLT7Q1iMWkJMx0WI89+3MCNZ07CEwzz3McNXDSrLCHoecXCKvp8QaaXZrNswXjsFiMV+ZmYjQbcgyjse/zD1COLBkSnwmq1JQkKfxUjXXBYGTK0WJfGLjenVx2jvykuXzB+UM3EPEcGJoOgPC8z5c3Z5vINquyt+GqGI53IoSZdjHHsWj//iSbHNnC47Xcf1AP7f/0bOt3sbHUliPmajSJl27IYDTR0eRDAjpZE5Y0V51Txm3/UJjhjZGUYqWv3kG03a+75ceK/Jdk2li8Yz+p1jbrLvNVswG4xUphtpTzPps+RAXyws412d4A7VvWL+l5/2gRy7Vom52NybPznvHH4gmF9XmzgS+xtr2gpmT5r7uXxd+q4/dwp9PnC3PTnDdx+blXKOuc6huyxuE+oObIRjBDiTOBBwAg8IaX8+cE47ti8TNpdfm5+sX+4Y/W6Rq4/bQIPvFGTMKZd4MzAGwiRZTWSP0AxHw487YVieNKJHGrSxRjHrnVMju2aU8dTnpfJjta+hODfoV7/gcOpXe4Ad/91Gzl2iy7n1t7n03tRsba18pwqHlq7g599YzLhiExS3rhtzVbuWzKdbS19GATYzUYCYU0TcUKBg0tOLOc379TyrRPLk+ahYl6FyxdUEoxEMAj4/tfGJ8x/P/qtmVw9YLjzgTdqePo7J5BtsnLF0x9x8rG5LJ5ZutceX1O3l1/8bTs5dgujs6x8//efkmO3YE2hzH/9aRMwqIDog0LaGDIhhBF4FDgNaAQ+FkK8LKX87ECPbTAIuj2BhBuzucfH0//cxa++OYNgRNPJzrKZeHhtDT/4+kSybVZGZ8Hd501NcNdXwc8HznCkEznUpIsxjr/WAEaD4L7Xt3HRrLJ9DupPNZx65+Kp5NgtupxbjOf+40TuWzIddyCEzWLiiXd2UtPqoiDLSk1LX0ojIYGxuXb29Pp46l9fcNPZk/EFI2xq6oWP6rl9UXXKeahfLJmOQIv/fPCNHfz0rMn8YFVizsCNjd2pXzx6/exsc+ELRphSMoq6NldC0PXA3zfDpElonT+zVHceO39mKT/506YEY24QEI5Imnp8zNz3n00xgLQxZMCJQK2Usg5ACPEcsAg4YEMGYDUbk27MLk+Azbt7Kc+14bCaeXhtDd86aSyBcFgP3iwdlcmMMaMOWtoLxfCkEznUpIsxjr/WbX1+vv30R/iCEV1SymiABZMKmFoy6iuvf6rh1Jtf1JLKPrS234jFhHe9USeLgdfH5Q+lNBJmg+DuN2ro8gS4/rQJ5Gdl6Nttaurl411dKY3RjtY+JhRkcUy2jZpWF93eQNJ2MUevgefc2ebS1wmBnhFj1bqGpKHYuxZPpbnbo28bv58vGEky5ssWjKfQOTzOE+GAn/a65AzR+4umnD/1oB3vYJNOhqwE+DLueyNwUvwGQoilwFKAsrKyfTq402ri1oVTuD0u8V3shv35+dPo9QW5cs44jAZwWs16o46lvRhJw0VHAul+XdPJGMeudfxwaPxD95RxeUMq92DDqRMKs3QjEZOKeuzvtQRCkqXzKphQmMXkon5ljylFTu5cXM3NL/YPPd65uJrWPh8XHF+KQUBFfiahiEzYzihSG6NJRU7ueOUzVp47hdsXVWMQyXN0azY2seKcKm5b0z/ceMeiah54owaAZfMr8YfCum7k+TNLMRjgviXT8YfCZJiMlOZYcfuDLF9QiS8Y5sUNTfp+qco1Y8wo8h0HL4VT/POvqKiIOxcfTMMzspXz00bZQwixBDhTSnlV9PtlwElSymtSbb+vyh5fdnXz2W4vUsJnzb2EI/DKpiauObWSomwLzV0+Hv3HThbNKGHxjJK0fcAqFINR1+bi7IfeTXrgvjpEB5XB9v/LtXMRAlr7fOQ7rJiMsKfHjycQoiw3M2Wm6FAowtbmHvb0+CjKtjK50EljjzfhpWBXh5uf/3Url5w4lq27e6kszKLLHdDTucTEvld91EBNq4s1V89hzCgb21r7qGt3J0wJrDiniuLsDIQQtPb6aXf5mTEmm+88sw5fUItLW3luFZ3uQIKxi82bA3y4s405EwrZ0+2lfLSDHk+AR/9ey8pzqtjd40vIDn3HomqmlWYRkTC5eNRQf6IhvwXt6/MvTUh/iSohxMnASinlGdHvNwJIKf871fb7+kN6vAG+7PHg9kdwB8J4A2FsFiPeQJidbS6e+7iBi08oo7LQwfyJhSPyzVqhOBAONGTgUIccxM734voGvnnCWOraXEwtycYXDNPrC7GzzcUfoxJV8eUIBMJ8vqebDneIDY3d+kvrxSeUJTiGTCp20NYb5NaXtR5feZ6NH54+kaYuL7l2C5kZJrJsJurb3Tz5zy/44WkTmTcxj23NLtpdAfKzLGxt6sVmNuC0WdgeVTIxCKgscDA+30Zxjp1RwyBRpQzZCEUIYQJqgAVAE/Ax8C0p5dZU2+/PD+nxBtiyp4+WXj+Fzgyqihzs6QvS0OnGbjFR6MygLHdkDg8pFAeDeIHf/RkOPdD997e8nW4/ZqOBQDiCJe6/JxBOGYweCkXY0dpLtzdEpztAYVYGRoOgpc9PZoYJp9XE5EKnpnrS3KM/EwqzjezpCdPS66fImYFBQIc7SPGoDCYXZmMyGQgEwmze3YMnGMRmNulGLRxBO05WBtl2LQxgH4wYKEOW/oYMQAhxNvArNPf7p6SUdw227RH6QyoUiqMXZcgGIZ2cPZBSvgq8erjLoVAoFIqRg0qsqVAoFIq0RhkyhUKhUKQ1ypApFAqFIq1RhkyhUCgUaY0yZAqFQqFIa5QhUygUCkVaowyZQqFQKNIaZcgUCoVCkdaklbLHviCEaAPq92PX0UD7QS7OSOZoqu/RVFc4uup7NNS1XUp55lA2FEK8NtRtjwSOWEO2vwgh1kkpZx3uchwqjqb6Hk11haOrvkdTXRXJqKFFhUKhUKQ1ypApFAqFIq1RhiyZxw93AQ4xR1N9j6a6wtFV36OprooBqDkyhUKhUKQ1qkemUCgUirRGGTKFQqFQpDXKkMUhhDhTCLFdCFErhPjp4S7PwUAIsUsIsVkIsUEIsS66LFcI8YYQYkf0f050uRBCPBSt/yYhxMzDW/qvRgjxlBCiVQixJW7ZPtdPCPHt6PY7hBDfPhx1+SoGqetKIURT9PfdEM2iHlt3Y7Su24UQZ8QtT4v7XAgxRgjxthDiMyHEViHE8ujyI/L3VRwAUkr1p80TGoGdQAVgATYCUw53uQ5CvXYBowcsuxf4afTzT4F7op/PBv6KllJ8NvDh4S7/EOo3D5gJbNnf+gG5QF30f070c87hrtsQ67oS+FGKbadE7+EM4NjovW1Mp/scKAZmRj9nATXReh2Rv6/62/8/1SPr50SgVkpZJ6UMAM8Biw5zmYaLRcD/Rj//L7A4bvlvpcYHwCghRPHhKOBQkVK+A3QOWLyv9TsDeENK2Sml7ALeAEacKsIgdR2MRcBzUkq/lPILoBbtHk+b+1xK2Syl/DT6uQ/4HCjhCP19FfuPMmT9lABfxn1vjC5LdyTwuhDiEyHE0uiyQillc/TzHqAw+vlIuQb7Wr90r/c10aG0p2LDbBxhdRVCjAWOAz7k6Pt9FV+BMmRHPnOklDOBs4CrhRDz4ldKKSWasTsiOdLrB/waGAfMAJqB+w9vcQ4+QggH8DzwAyllb/y6o+D3VQwBZcj6aQLGxH0vjS5La6SUTdH/rcCf0YaWWmJDhtH/rdHNj5RrsK/1S9t6SylbpJRhKWUE+B+03xeOkLoKIcxoRuz3UsoXoouPmt9XMTSUIevnY6BSCHGsEMICXAy8fJjLdEAIITKFEFmxz8DpwBa0esU8t74NvBT9/DJwedT7azbQEzeEk07sa/3+BpwuhMiJDs2dHl024hkwh3ke2u8LWl0vFkJkCCGOBSqBj0ij+1wIIYAngc+llA/ErTpqfl/FEDnc3iYj6Q/N66kGzavrpsNdnoNQnwo0r7SNwNZYnYA8YC2wA3gTyI0uF8Cj0fpvBmYd7joMoY7Pog2pBdHmPq7cn/oB30VziKgFvnO467UPdf1dtC6b0B7kxXHb3xSt63bgrLjlaXGfA3PQhg03ARuif2cfqb+v+tv/PyVRpVAoFIq0Rg0tKhQKhSKtUYZMoVAoFGmNMmQKhUKhSGuUIVMoFApFWqMMmUKhUCjSGmXIFAqFQpHWKEOmOKQIIW6KpuTYFE07cpIQwiyE+Hk0xcanQoj3hRBnRbffJYQYHbf/14QQr0Q/XyGEaItLYbJBCDFFCDFWCOEVQqwXQnwuhPhICHFF3DFWCiF+NKBc+nmEEK4U5R6YLmWDEGJUtDw90XNtF0K8I4RYOMRrsUEI8dyAZc8IIb6IrtsohFgQt+7v0XNsFEJ8LISYMbD8Qkt7csaAY/5ACPHr6OfRQoigEOJ7g9VfoUg3TIe7AIqjByHEycBCtNQc/uiD0wLcgZayozq6vBD4tyEedpWU8poB5xkL7JRSHhf9XgG8IIQQUsqnD6AKv5RS3jfgXADvSikXRr/PAF4UQnillGsHO5AQYjJaSpW5QohMKaU7bvWPpZR/EkKcCjyOpsoR41Ip5TohxHeAXwCnDTj0s2hqHfHKFRcDP4l+vhD4ALgE+M1QKq1QjHRUj0xxKCkG2qWUfgApZTvQDfwHcG3c8hYp5eqDdVIpZR1wPbDsYB1zL+faANwOXPMVm16CpsrxOoOnUXmfwVXaB1v3J+AbUfmpmFE/Bng37rw/BEqEEKVfUUaFIi1QhkxxKHkdGCOEqBFCPCaE+DdgPNAgB6iaD+Dt2HAe8MSAdRcNGO6zDXKMT4FJB1j+6+LO8/ZethvKuS5CywX2LJpxScWZwIv7sk5K2YmmqXhWdNHFwGoppRRCjEGTsPoIWB0tg0KR9qihRcUhQ0rpEkIcD8wFTgVWAXcPYddTo703hBBfA+Lnt1INLaY6RvzCwXTZvkqvLWlocRBSFkBfKcQstJ5pgxCiCXhKCJEbNUIAvxBC3I2m0n7ygN1/H+1tOdBSt6QiNrz4UvT/ldHlF6EZMNCM6FMcgWlfFEcfqkemOKRILeXI36WUK9CG384ByoQQzmE+9XFoGYYBOtBS3seThTbMebDPlYpLgElCiF1oArdO4IK49T+WUk4AbkAzNvFciiYG/b/Aw4Mc/yVggRBiJmCXUn4Sd94roud9GZgmhKgc5BgKRdqgDJnikCGEmDjgwTkDTZn9SeDBuHmdfCHEhQfxvGOB++h/8L8DnCv6U9ycD2yUUoYPwrmmAbegqbCnWm8AvglMlVKOlVKORZsjSzW8+AhgGOiFKDWl71uA2UKIpCFMKaULeBvNCD4bPe8EwCGlLIk7738Pcl6FIq1QQ4uKQ4kDeFgIMQoIoaXUWAr0AncCnwkhfIAbuHWIx7xICDEn7vv3gd3AOCHEesAK9AEPSSmfAZBSbhJCPAK8J4SQaIkZr4o7hl0I0Rj3PZYL6zohxL/HLV8c/T83ei579FjL9uKxOBdoklLujlv2DjBFJOYWIzqvdSeax+HfBqzzCiHuB35M/9BhPM+iJVK9OPr9kuj3eJ5HG969Pfp9kxAiEv28Wkp5/SB1UChGFCqNi0KhUCjSGjW0qFAoFIq0Rg0tKhTDhBDiJrQA5Hj+KKW863CUR6E4UlFDiwqFQqFIa9TQokKhUCjSGmXIFAqFQpHWKEOmUCgUirRGGTKFQqFQpDX/H0gkW8PXxcW0AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light", + "tags": [] + }, + "output_type": "display_data" + } + ], + "source": [ + "sb.jointplot(data=flights_needed_data, x=\"SCHEDULED_ARRIVAL\", y=\"ARRIVAL_TIME\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aSRS4HrFwxZF" + }, + "outputs": [], + "source": [ + "# using Pearson's correlation method\n", + "corr = flights_needed_data.corr(method='pearson')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "id": "J9_L4K8Zwu5B", + "outputId": "1bcf2276-9af6-4094-b706-29e4bd68d0cf" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AAAFkCAYAAACpYds4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydeZwcVdW/n2+SgSSETdkXCWAEWcPyCvLKz6CgQVEQhRBBRMHAq4CAgCCLkTWyCLIoIEIQEQirUVE2CZtsAcIWBbIJYd8EgZBl5vz+uLdDTaV75lZ3zUxn5jz51CdV954691Z3T5++61dmhuM4juM4afTr6Qo4juM4zuKEB07HcRzHKYAHTsdxHMcpgAdOx3EcxymAB07HcRzHKYAHTsdxHMcpgAdOx3EcZ7FE0iWSXpX0ZI18STpH0jRJj0vavIxyPXA6juM4iyvjgZEd5O8IDIvHGODXZRTqgdNxHMdZLDGzu4A3OzDZGfidBe4HlpO0aqPlDmjUgbPY41tHOY6Tihp1MP/1GcnfOUusuO7+hJZihYvM7KICxa0OPJ+5nh3TXirgYxG8xdmDxP73eyTtmEnbTdLfJLVKmpI5jsrYrCBpvqQDcv5mSXoi9uXfKWmt7nwex3GcMjGzi8xsy8xRJGh2Gd7i7EHMzGLwu0bSHYT34xRCn/1jZja8xq27AfcDo4ELcnnbmdnrkn4GHAt8r2tq7ziOUwdtrd1Z2gvAmpnrNWJaQ3iLs4cxsyeBPwE/Bo4n9MdP7+S20cCPgNUlrVHD5j5Cl4TjOE7z0Log/WicicDesXdva+BtM2uomxa8xdks/Ax4BJgHbBnTBkmakrE51cyulrQmsKqZPShpAjAKOLOKz5HAjV1ZacdxnKKYtZXmS9KVwAhgBUmzgZ8CLaEcuwC4CfgSMA14H/hOGeV64GwCzOw9SVcD75rZ3Jg8p0ZX7ShgQjy/CriE9oHzDkkfAd4FjqtWnqQxxAH3Cy+8kDFjxlQzcxzHKZ+28gKnmY3uJN+AH5RWYMQDZ/PQFo/OGA2sImnPeL2apGFm9my83g74D3AFoSV7WN5BHGCvDLL7rFrHcbqPElucPYWPcS5GSPoEMMTMVjezoWY2FDiVEEwXYmYLgEMIffsf6f6aOo7j1KCtNf1oUrzF2bzkxzj/BswBbsjZXQdcDZyQTTSzl2L//w+AE7uyoo7jOMn0ghanQhew04fxD4DjOKk0vAHC3On3J3/nLLnu1g2X1xV4i9NxHMfpPkqcHNRTeOB0HMdxuo9e0FXrgdNxHMfpPpp40k8qHjgdx3Gc7sNbnI7jOI5TgHK20utRPHA6juM43YdPDnIcx3GcdMx8jNNx2jH/9RnJtoNW2zbJ7merjkiy+xdzksseoLTlYf/TOijJblDij+i7Wz5IMwRWY4kku36JS+vmd8GS3f+Q1u32iba0ZwGY2m9u50ZAS+Jzb7ogrezX+6e/Pqlf/R9bkFbH5wakl526sHGwpVkOKvCx+P7zv083rkUvGOP0LfealIyQ9VOSHpP0I0n9cjY3Sro/nq8UhaxXyeSfL+no7q674zhOTdra0o8mxVuczctCdRRJKwF/AJYhyOYgaTlgC+BdSeuY2QxJ44AzgL0kbQ5sG20cx3GaA29xOt2Bmb1KkAE7UFrYx7grQQD7KmCPmHYRsK6k7YDzgQPNbH5319dxHKcmrfPTjybFA+digpnNAPoDK8Wk0cCV8RgdbdqA/yNs/P60md1VzZekMZImS5p80UUXVTNxHMfpGryr1ukJJK0MDAPuMTOTNF/SRmb2pJlNkfQk8Kta97sep+M4PYZ31TrdhaR1CJP5XgV2B5YHZkqaBQylvSZnqii24zhO99ILWpweOBcDJK0IXACcZ0EHbjQwMiNmvQUfjnM6juM0L70gcHpXbfNSEbJuARYAlwO/kDQUWAu4v2JoZjMlvS1pKzN7oCcqWyF1bSbAnBfvTrI7Y4vjk+w+1TY4uey2xMVwqX+6Lyf+JW3aNjDRI8xNrGO/xM52FZBSTO2/X1ZpayTfSq0ksH7bkkl28xIfJ3E5Y5d00cxoSXvuQamVBNpKHl2Z1b97NySwJp70k4oHzibFzPrXyJoFrF7FfvPM+YiuqZXjOE6DlDjGKWkk8EvCxMmLzWxcLv9jwGXActHmKDO7qdFyvavWcRzH6T5K6qqV1J+w7G5HYANgtKQNcmbHAhPMbDPCcFbNSZNF8MDpOI7jdB/Wln50zKeAaWY2w8zmEda075wvjbBxDMCywItlPIJ31TqO4zjdR4FJP5LGEDZ/qXBRXE4HYcjq+UzebGCrnIuxwC2SDgKWArYvWt1qeOB0HMdxuo8CY5y5Nef1MBoYb2ZnSvo0cHlc897QQKsHTsdxHKf7WFCakPULwJqZ6zViWpZ9gZEAZnafpIHACoT18HXjY5yO4zhO91HeGOdDwDBJa0tagjD5Z2LO5jng8wCSPgkMBF5r9BG8xemUSqp2JqSvzzz84ROS7MZtcVxy2QMS1zSmqkgum9jx806Bn6qXzXkmya6lX62VS+2Z35a+Xm9Botjw3oPXT7JL1YYEeDtxzeeSicsZFyS+16mfCYBVEhtN01rSPhhFVjamvpbLJH4mP1A3t59K2tjAzBZIOhC4mbDU5BIze0rSCcBkM5sI/Aj4jaRDCROF9ombyDSEB07HcRyn+yhxHWdck3lTLu34zPlU4H9LKzDigdNxHMfpPpp4K71UmnaMU1KrpCmZY6ikEZL+XMV2kqQt4/kQSb+WNF3SI5IelvS9mDc0Kodk7x0r6XBJ58dypkqakyn3GzXqN17SC5KWjNcrxA3XqVbPaP+NTH2fy2hrIulGSe9m6lmpw2OS/iFpvYzvt3Ovzfa51+xJSX+KYteO4zjNQ3ljnD1GM7c455jZ8GxC3Ke1My4GZgDDzKwtbpD+3c5uMrMfZMr4c77sGrRG379OsM3zH0IXwj0xwK2ay59eqYOk/YGfAN+OeXeb2U5VfM7J3HMZ8APg5Drq5jiO0zWUN6u2x2jaFmc9SFqXsJvEsZV1Omb2mpn9vIuKPBs4VFI9P0Cu4kNFk12B6zuwXQZ4q6D/+6iypy24kLXjOD2IWfrRpDRzi7OiDgIw08y+lnDPhsBjnSxuXTfjF2AV4Iw66/gccA/wLeBPBe+9nTDbqz8hgI4BstNCK/VcGhhM+x0xts09w9fNbHrlIvr8PPDbagW7kLXjOD1GLxjjbObAuUhXbVEkHQPsBqxkZqvF5OlZv5LGNlIGcCrwR+AvmbRawSib3koIunsAg8xsVmbIs109JY0iBLqRMa9WV23lx8bqwD+BWws+i+M4TtfSCwJnr+qqBaYCm0phYZKZnRyDzzId31Y/ZvYsMAXYPZP8BrB8zvQjwOu5tKuAc4AJnRQzEfh/CdWp/NhYCxBhjNNxHKd58MlBzYWZTZM0GThJ0nFm1hq3WEpf2VwfJ9O+xfkssJqkT5rZPyWtBWxKCLBZ7ia0WK/sxP9ngOmd2CzEzN6XdDBwo6RfmVm3jcb/iznJtqnC06kbGxz18InJZds7+d8w1bnt079IsvvboLQe79P/MqZzo8j7X74kyS5V2HhAgU0IWhLtDtk7ben+qZenf9Ucc+qwJLvWhx5Nsrv9D0OS7J5cMv31mZ34OK8wL8luNaWJdwO8rLTNKTaZm/a5mDagq78ec7R2r3B2V7A4Bs7PS5qdud4tl78fcDowTdIbwBzgyK6sUNyt4hFg83g9V9JewKUxcM8H9jOzt3P3GbXHVytjnALmEZ6rQn6M8yQzuzbn+1FJjxM2Ob68gcdzHMcpj17QVdu0gdPMFvmZaGaTgEFVzEdkbN4B9q/hcxawUS5tbGc2NXztk7veNXd9L7B1jXtH1EgfkqlDteesvAbLdnR/5vor1ewcx3F6DA+cjuM4jlOAJh67TMUDZydIOp9F9zr8pZld2hP1cRzHWZyxtsV/BZwHzk6o7CjkOI7jlIB31TqO4zhOAXxWreM4juMUwFucjtOeAUpfE9aWaJoqMJy6NhNAy6yQZPfR/mnr8PonSl5r2ZWS7ABaE9dnJn8NqcDYUuqaz4EDk8z6UX4rQ4PS1j6ukLiWsh9pzxJs01gi0TJRuxuAIYk+lx/wfqLH9OcuBQ+cjuM4jlOAJt68PZWm2nIvoyf5VNSh/FFl+7wCOpTXSBoc0wdIek3SuFw5kyQ9Hct4SNLwjvQ4s3qf8f6Fup65ev1L0hkZu31i+dk6b1DluTfO5L8paWY8v61KWSZpv8y9w2Pa4fF6fOb+KZL+UeZ75DiO0xBtbelHk9JsLc6snuRKwB8I+8z+NOan6FBeARwA/ALYAXgG2E3S0XGnngp7mtlkSd8BTjezHeL9Q8npcUo6sJN6321mO0kaBDwq6Ya4AQLA1WbW4f1m9gRQqf/4WP61mfpkeZKwL+7F8Xo08FjO5oj8TkKO4zhNQS9YjtJULc4sZvYqQWrrQKnAwFnY//Xj8Xw08EuC/Nena9jX1K0sipnNIexHW4q/GvwbGChp5fi6jAT+2oXlOY7jlEdra/rRpDRt4AQwsxlAf6Ayo2LbXLfnuln7KCi9I/BE3CN2e4JO5pWEIFqNkcCNZdRX0vLAMOCuTPKoXJ2rbqVXkGsJe/RuAzwCzM3ln54p74oq9XQha8dxegRra0s+OkPSyDjsNk3SUTVsdo9DcE9J+kMZz9BsXbWd0ZkOJYQW52+BrwJ3mNkcSdcBx0k6xMwqP2OukLQEMITYTdoB1foWsmnbSnqMEDTPNrOXM3mddtXWwQTgamB9wo+CbXL5HXbVupC14zg9RkldtZL6A+cThuRmAw9JmmhmUzM2w4Cjgf81s7fiEGDDNHWLU9I6BMHnVzsxnWNmw+NxkJnNI7Qwt5c0C3gY+Cjwucw9ewLrAJcB53biP6+vmdfWvNvMNgU2BPaV1JAAd2fEwDyf8IG5vSvLchzHKZXy9Dg/BUwzsxnxO/8qYOeczfeA883sLVg4BNgwTdvilLQicAFwnplZkWFOScsA2wJrmtncmPYdQjC9tWIX/R4HTJe0vpn9q4bLScBekm6LE4y+DdyRNzKzmXEG74+p3TVcFscDK0XN0S4uKp3/aU3viU6dM5e2QjJdOxPS12du/ngt1bf2PLzZ8Ul2k/9nbJIdwJAl0l7L1Hc/dV1oESb8Ku1dXL5/+mf0lkOfTbJ7dUDaOs5v339Ikt29nz07yQ6gf+JLuUVr2qf31f7JRXPwvqnvY5re7Y7np/0tlEaBFqekMYS5LhUuij1mEOaSPJ/Jmw1slXPxiejnXsKw31gz+1vRKudptsBZ6XJtARYQdCSz34ad6lBGvgb8vRI0I38ETpPaK8bGrtwzgSOAfWvU6yJCt+hjkgyYTGj+V+MC4PDMbNhRkj6Tyf++mTW8RKQTH6dLOjZz/an4i8xxHKdnWZA+6Sc3rFQPAwhDaCOANYC7JG1sZv9pwGdzBU4zq/m7q6AO5WWELths2pvAivFyRC7vzMz5LBbV7JwHVB2njPWalLmew4ezasfHI5kqOp8L65MvK2Mzttb9juM4TUV5smIvAGtmrteIaVlmAw+Y2XxgpqRnCIH0oUYKbuoxTsdxHKeX0WbpR8c8BAyTtHac6LkHMDFncyOxoSRpBULX7YxGH6GpWpx9AUkbE7qgs8w1s3zfvOM4Tq8jZZlJkh+zBXFzmpsJ45eXmNlTkk4AJpvZxJj3BUlTCRNNjzCzNxot2wNnN5PdJchxHKfPUeLOQWZ2E3BTLu34zLkBh8WjNDxwOo7jON1HL9hyzwOn4ziO03008VZ6qXjgdBzHcboN8xan47RnUIFx/5cTP33LJvr826D0P8hU4enUjQ2+9+gJSXbHbnlMkh3AJ+en2a3Tmt+quDpPJ24YADA3cb+Cf7WktR6Wq73SbBHuHJj2hrckbujw6DanJNm1tqRtGADQmvj67DTs+c6NgAtnrJFc9qmXpD3384tsYV2dkf27W8jaA6fjOI7jpNPEOpup+DrOBCR9NKM28rKkFzLXK0maL+mAjP3SkqbHDYaR1CLpCUlbxet3OylvQ0l/j7v+PyvpuIq0mqSxFdHqjP2sKDNWq46pu9Y5juN0LeWt4+wxPHAmYGZvVDaRJ2ypd1bm+uvA/WT2pjWz/xK25DsvJh0O/MPMHuisrCg7NhEYZ2brAZsS1E++38mtrbXq6NvtOY7TNHjgdAgB80fA6pIWDlSY2QQASUcCB1B7b9s83wTuNbNbop/3Cdv9VdWaqwfX43Qcp6ew1rbko1nxMc4GkLQmsKqZPShpAjAKODNj8kPgn8CYuFduChsSZNAWYmbTJQ2Jqi8N43qcjuP0GE3ckkzFW5yNMYogKg1BCy4vJTYSeIncpvENUutTt/h/Gh3H6fVYmyUfzYoHzsYYDewTxbInAptkJgStBhxMEFv9kqRNEn1OBbbIJkRB73fN7B0WFdUGWBpoSCbHcRynW+gFY5zeVVsnkj4BDDGz1TNpPyME0xOAs4BTzGy2pMOA8yX9v7h3YkdcAfxE0vZmdlucLHQOcFrMvwu4QtI4M/uvpF2Bx8ysKbbjuLvlg2TbTdvS1o+9k/jz7vS/jOncKKJlV0qySxWeTl2fedLkk5PsAI7f8tjOjYCnW1qS7PolS4eni2P/9MClkuxOO3dOctknn7ZBkl3bM88k2T1yXvntg7bEDp4TZ66SZLdCgbIHWNq7MyZxMe4NietmYdEutbpo3qHLZLzFWT+jgRtyadcBoyXtAHwM+C2Amf0JeAvYuzOnUc9zZ+BYSU8DTxDkc86L+Y/H83uiqPcBwH5lPJDjOE5XYwvako9mxVucBcmKRlfJexz4ZLy8NZf31cx5O+HtKn6eICe2ncu/ELiwnjo6juP0KM0bD5PxwOk4juN0G8086ScVD5w9hAtaO47TJ/EWp1MvLmjtOE5fxFucjuM4jlMEb3E6juM4Tjq2oKdr0DjqfFmh08sp9QPw3aHfYLVErctlLG011KVz0tbrAew2eFiSXWviYw9JrCPAqolfCE+3pP3kPmHyScllMz9Ne5H+ib+VW9Me5qyt09elLpPY0piTuIg0VTMU4H2lvd+DE9dIvqT0b/9hrWmv+X8TP2pLJP7FzuyXKOgKrGxpdTzu31cUeNWr8/qOn03+zlnhr3c2XF5X4Os4nVJJDZpdQWrQ7ArKDpqFKDtodgGpQbMrKDtoFqHsoNkVpAbN0mgrcHSCpJFRfnGapJpCGJK+Lskkbdn4A3hXreM4jtONWEk/oiT1B84HdgBmAw9JmmhmU3N2SxMENzqVdUylKVqcko6R9JSkx6Pw8lZR/HlcFHJ+RNJ9knaM9rMkrZC5f4SkP8fzfSS9lhFxniJpA0lDJc2R9Kikf0p6UNI+GR+1BKJXiOeLiE/He17IlbVcrM/bsaynJd0laadOnr9yf2vm/OBsvSSNl/R+/CBU7j07/pKq1LM1V5/S5Mgcx3EaxdrSj074FDDNzGZEzeGrCLuu5TkR+DmQvh9oJ/R4i1PSp4GdgM3NbG4MAEsQHnZVYKOYvjLw2US3V5vZgblyhgLTzWyzeL0OcL0kmdmlDTzCWWZ2Rq4sgLvNbKd4PRy4UdIcM7s978DMTgZOjrbvRjHqiq+xOfNphA/H7yX1Az4HvJDJn5O933Ecp5mw1tK6xFcHns9czwbarYOXtDmwppn9RdIRZRXcDC3OVYHXzWwugJm9TlD6+B5wUCb9lYo4dBmY2QzgMIKCSZdiZlMIG78f2JltAlcR5MwgbMt3L1BonpoLWTuO01MUaXFmv6vikazkEBsWvwB+VPYz9HiLE7gFOF7SM8BtwNWEDdGfizJatbhDUkURZAjwr0zeKEmfyVx/uoaPR4D166v2Qg6VtFc8f8vMtuugrDJ+8TwDfFXS8oSN5n8P7JjJHxQ3f69wqpldnXXgQtaO4/QU1pbe4sx9V+V5AVgzc70G7XvfliZoIU+KvYCrABMlfdXMJhepc54eD5xm9q6kLYBtge0IgfOUhFu3i61TJI0AsuOT1bpqq/nIJtYrEL1IV20Nypyydz2wB6FbYv9cnnfVOo7TtJQ1OYigGjVM0tqEgLkH8M2F5Zi9TUaxTdIk4PBGgyY0QeAEiFqSkwi/DJ4gBIOPSVqmk1Zno2wG/DOev0HoNs5SpkB0tqxGuRp4GLjMzNpq/ChwHMdpOqykZT9mtkDSgcDNQH/gEjN7StIJwGQzm1hKQVXo8cApaT2gzcyejUnDgaeBR4FfStrfzOZJWhEYYWbXlFTuUOAM4NyY1GUC0ZI2AY6jJN1MM/u3pGMIXdtNRb8CDet+iZ3ELf36J9mligsH2zRSn2ad1rS1lKmi00D6+syWJdPsWtMXxNu8dOHpFFaZn97MmL5EuVMvViwwGeW9kmd9rDcv7TWfPDD9czEv8XHeJ+2rq4UCn8kSKLHFiZndBNyUSzu+hu2Issrt8cBJGJ88V9JyhEku04AxwDvAScBUSR8A7wFVX5Aq5Mc4vw+8CKwr6VFgIPBf4BwzGw9BS1NSRSDagFdpH+gGS5qduf5F/D87xgmwS/x/21jW4Ojr4GozauslanJWIz/G+Tcz8yUpjpPAUf/+fan+bl15VOdGfYy28mbV9hg9HjjN7GFgmxrZR8Yjf8/Q3PUkQlcvMRCOr+FvUCd1qSkQbVZz77WxVdJmAct2VFYHdRiSux6bOd+nxj1DM+dpzTPHcZweoMjkoGalxwOn4ziO03fwwOkUJo5N7pZLviZuguA4jtOr6Q26Ih44u5nsLkGO4zh9DW9xOo7jOE4BylqO0pN44HQcx3G6jVafVes47ZlfYC2lEldJzm9LW482oMgv2USNxlTB66cHpK2l7Je8gpQCotOJ6zP7F1ivl7g2NHUt7vMt6QskU7+UUhdY/ye1kl3AjCLrdhNJnTa/ZOJW5PO6eddNb3E6juM4TgF8jNNxHMdxCtAbZtU2g6zYYomkXaKA9PrxeqikJ+N5Rch6iqR/Saq5Cbyk72REp+dJeiKej1MQ5T4v2o2N5X08c+8hMW3LeD0rc/8USed07avgOI5TDGtT8tGseIuzfkYD98T/f1ol/24z20nSIOBRSTeY2b15oyiifSmEwEd71Zd9cuZPEBQATorXuwFP5WwW3u84jtNstLYt/u21xf8JegBJQ4DPAPsSAllNzGwOMIWgVt4oNwI7xzqsC7wNFA6SLmTtOE5PYZZ+NCve4qyPnQmbpz8j6Y2oJ/pGNcMoOD2MoL7SKO8Az0vaKNbhauA7OZuswPdlZnZW3okLWTuO01O09YJZtd7irI/RwFXx/Kp4nWdbSY8RBFZvNrOXSyr7KkIrdxfghir525nZ8HgsEjQdx3F6EjMlH82KtzgLIukjwOeAjaP8WH9Cq+38nGlljHNt4H5JE8xsCo3zZ+B0glDrOy5i7TjO4kQzd8Gm4oGzON8ALjez/SsJku4E1qxmbGYzJY0Dfkz1lmkhzOx9ST8GnmnUV0+T+vezIFFLvNBS85J/zc5NdFeo1NYFSWbJotOpgteAluhQga8wXTFBMnUribmJm10MsX6MW2uvzg2BF5W26cS6/bpgA4TEP5z+Tfqjujd01XrgLM5o4Oe5tOuAozu45wLgcElDzWxWoxUws6s6yM6OcT5uZns3Wp7jOE5Z9IZZtR44C2Jm21VJOwc4J3M9iSisHa/nkDCrtopA93iiKHdW0DpnM6LW/Y7jOM1GL+ip9cDpOI7jdB+9oat28W8zL0bkdgmqHPlJRY7jOL2WMmfVShop6WlJ0yQdVSX/MElTJT0u6XZJa5XxDN7i7EayuwQ5juP0RQroA3WIpP6E1Qw7ALOBhyRNNLOpGbNHgS3jpMr/A04DRjVatrc4HcdxnG7DUPLRCZ8CppnZDDObR1jjvnO7sszuMLP34+X9wBplPIO3OB3HcZxuY0F5Y5yrA89nrmcDW3Vgvy/w1zIK9sDplMp/SFt7CLCslkiy23vw+kl2h+ydKOgMMHBgktmEX6V1LP2rJW2t6U8PXCrJDuCsrU9Otk2hK/Scf/jICUl2Z25xfLrPi7ZOsuu/wbZJdldsfXqS3ewB6S/QijaA19T5Z/2Ffmmfi8GW3vn3Rr+0z+T6rWlrSGf1T5UEL4eEluRCJI0BxmSSLopbhhZC0l7AlsBni95bDQ+cjuM4dXDOrKs7tTlyaMN7nvQ6ioxx5vbVzvMC7TeeWSOmtUPS9sAxwGfNbG6B4mvS58Y4JZ0l6ZDM9c2SLs5cnxlnYj2Zu2+spMPj+XhJMzMzY/8R0/eR9Fpu1uwGWa3OnM+tJT0Q7f4paWwndd8lzg77Z9Td3CWTN17SC5KWjNcrRJkyx3GcpqHEMc6HgGGS1pa0BGEP74lZA0mbARcCXzWzV8t6hj4XOIF7gW0AJPUDVgA2zORvA/wjwc8Rmc3Ut8mkX51JH56b4ZXnMmCMmQ0HNgIm1DKUtClwBrCzmX0S+CpwhqRNMmatwHcT6u44jtMjtBU4OsLMFgAHAjcD/wQmmNlTkk6Q9NVodjowBLgmNlAm1nBXiL7YVfsPoKIasiHwJLBqlP96H/gk8GY31WUl4CUAM2sFOgqyhwOnmNnMaD9T0qnAEcC3os3ZwKGSftN1VXYcx6mf1mI7NneImd0E3JRLOz5zvn1phWXocy1OM3sRWCDpY4TW5X3AA8CnCYPHTwDzgHWzXa7AATlXp2fyr8ikj8p11Xa0W/ZZwNOSbpC0v6SOZqxsCDycS5tM+9byc8A9fBhIq+JC1o7j9BRtSj+alb7Y4oTQ6twmHr8gTGveBnib0JULMD12oQJhjDPn4wgzu7aK76vN7MBsQi3pLzM7IQbdLwDfJGwgP6Lgs+Q5Ffgj8JdaBi5k7ThOT9FWYouzp+hzLc5IZZxzY0JX7f2EFmfq+GZpmNl0M/s18HlgU0kfrWE6Fdgil7YF8FTO37PAFGD3suvqOI7TKFbgaFb6covzcGBGHFt8U9JyhG7P7xEGk7scSV8GbjIzA4YRJvf8p4b5GYQB7r+b2SxJQ4GfEPRB85xMBy3OruQTbWlrMwHeSlxYODhxwfSpl6d/nPuRtnZt+f5pZS9n/ZPsTjs3UTsTWCWxr2qV+WkT/J9vSf+dnNpNljOnKfYAACAASURBVLo+80cPp633BBi3xXFJdi3cn2S3yYK0tcUvDyj/6/A7LW8n2V07b/lkn6nvYvLfVze3n8racq8n6auB8wnCbNo/5NKGmNnrklIC5+mSjs1cfyr+P0rSZzLp3wdeBNaTNDuTfijwdeAsSe8DC4A9YyBfBDObEgWs/ySpBZgPHGlmU6rYPiXpEWDzhOdwHMfpNtqaVGC7CH0ycMbgtEwubZ/M+SzC8pBs/thqtjnGx6Ma1bbxuKbjmrbHzK4Hrq+Rt0/uetcivh3HcbqD7t2nqGvok4HTcRzH6RmaebZsKh44mwxJ3wF+mEu+18x+0BP1cRzHKZPeMKvWA2eT4ZqdjuP0Zpp5tmwqHjgdx3GcbsO7ah3HcRynAL4cxXEcx3EK0OotTsdpz9R+6XJ367ctmWT3duJC7mNOHZZcdiq3HPpskt2dA9N+R5982gbJZV9w+DNJdtOXSFvA3hV/7Kmi06mbGgAc9fCJSXYL/lF1ZdYi/HXMI8llpzIXY+xae3Zq97aW6dQGIH37g3Q2npv2d3PfwO4ddfQWp+M4juMUoDcEzrr3WpJ0jKSnorDyFElbSWqRNE7Ss5IekXSfpB2j/SxJK2TuHyHpz/G8IwHoOZIejeLND0raJ+Njobh0Jm1hOZLerVLvsVHwOVvWcrE+b8eynpZ0l6SdEl+LKZKuyqVlxa4fk/T5TN6kWMZjkh6SlN1MflYUob5D0hdzPg+R9Ot4voKk+ZIOyNm0e50dx3GaCVP60azU1eKU9GlgJ2BzM5sbv6iXAE4EVgU2iukrA59NdFtNVWQoQaVks3i9DnC9JMVlG/VylpmdkSsL4G4z2yleDwdulDTHzG6v5UjSJ4H+wLaSljKz9zLZR5jZtZK2I6iRZPsS9zSzyXHd5unADjnXVxIUzW/OpO0BHBnPdyNsTj8auCDloR3HcXqavtziXBV43czmApjZ64TNyb8HHJRJf8XMJpRS0+BvBnAYcHBZPjsoawpwAkFhvCNGA5cDtwA717C5jyBdViTvWuDLkpaAhT8iVgPuzpT7I2B1SWt0Usd2uB6n4zg9RWuBo1mpd4zzFuB4Sc8AtwFXA28Bz5nZOx3cd4ekyusxBPhXJi+/Ofqna/h4BFi/vmov5FBJe8Xzt8xsuw7KOqITX6MIrcX1gYNov3F8hZHAjTXur5pnZm9KehDYkaCvuQcwwcxM0prAqmb2oKQJsQ5ndlLPrG/X43Qcp0fos+s4zexdSVsA2wLbEQLnKQm3bhdbp0gaQZD2qpAqAJ1NrPWl31kwWKSrtgYdvsWStiS0vJ+T9AJwiaSPmNmb0eR0SacAa7DoD4ErYmtyCDCc6lS6ayuBc9+YPgqotOSvAi6hQOB0HMfpKfpyVy1m1mpmk8zsp4TuzK8AH5MS51/Xz2bAP+P5Gyw6k3tpamtaNlJWNUYD60uaBUwnKK58PZN/hJl9AvgxIbhl2RNYB7gMOLeG/z8Cn5e0OTDYzB7OlLtPLHcisImk8tdiOI7jlExbgaNZqXdy0HpAm5lVFrkNB54GHgV+KWl/M5snaUVghJkVks/qoNyhBEHnSqC5i9ByG2dm/5W0K/BYLU3LgmVtAhwH7Fcjvx+wO7Cxmb0Y07aL9/wmZ34e8F1JXzSzhZN9YrfrccB0SeubWbbrutKyv4MQdK+MZXyCoBu6cFxU0s8IwTRdLbiLaCmwgfO8RNMlEzuTWx96NLlsDUpbQ/rqgDS7lsQe77Zn0tZmAswtuUuryB9F6pdW/w22TbJLFZ2G9PWZA7ZJU857Y8AikrXVyy0watGftNcz9e+hSJBItU0VLm/t5tHEMseGJI0Efkl4Sy42s3G5/CWB3wFbEBpao6JsZEPUO8Y5BDhX0nIEAeZpwBjgHeAkYKqkD4D3gDSJ+NoC0OtKehQYCPwXOMfMxgOY2eOSzgPukWTAq7QPdIPVXjz6F/H/7BgnwC7x/21jWYOjr4M7mFG7LfBCJWhG7gI2kLRq1jAGyJMIM2JvzuXNkXQmYSx1XxblSuAGQlcthAB5Q87mOkJ3eSVwPi6p8vc1wcwOq/EMjuPUydh/X9GpzZFDR3dDTRYvyhrjlNQfOJ8wx2Q28JCkiWY2NWO2L2Eey8cl7QH8nDDU1RD1jnE+DGxTI/tIPlwykb1naO56EjApno+ntgD0oE7qciFwYY28Wj+5xlZJmwUs21FZOd93Alvn0lqBVeLlPrm86wgBDjMbkcs7M3M+NJd3I5mxVjP7WZW6PA58str9juM4zUSJ7dtPAdPiagviWvqdgWzg3JkPv++vBc6LyxkbavjWPcbpOI7jOEVpw5KPTlgdeD5zPZtFl/YttDGzBcDbwEcbfQbfci8BSccQNhzIco2ZndwT9XEcx1lcKTKeK2kMYRiwwkVxOV2P4oEzgRggPUg6juM0SJE+0tya8zwvAGtmrteIadVsZksaQBiOe6NAFariXbWO4zhOt1HicpSHgGGS1o5r4vcgLM/LMhH4djz/BvD3Rsc3wVucjuM4TjeyQOUsSDGzBZIOJKxU6A9cYmZPSToBmGxmE4HfApdLmga8yYerExpCJQRfZ/Gm1A/AhWvs1blRpeDEaekLEv2tOT999GQF5iXZ/c/9RyXZPbpNysZZMK8tvZPn1oFpa0hXTFQG/k+irinA3MQvt3Xnpz3PygtS30X4QGk+3xiQZrfPlPTlzUV0Q49LWI7yyJq1tq9uz839lk4u9+Bvp72WNjftM/7k5clFs/WL1ze8mOSYod9M/iCePOsPTblBn7c4HcdxIinB0GmMZt4RKBUPnI7jOE63kbDMpOlZ7CYHSdpFkklaP15XxK6nSJoq6XeSWmJeRZx6iqR/SToj42cfSedJ+qyk+3JlDJD0iqTV4vXZCuLX/fL3J9Z5lqQn4jFV0kmSBlapf+XYO3NfVVFqBVHrDyQtq8A9iqLhMX83SX9LfV0dx3G6AytwNCuLXeAkbDl3T/y/wnQzGw5sTJiSvHsm7+6Ytxmwk6T/zfm7G1hD0lqZtO2Bp8zsxRgsv0ZYRJsqyl2N7cxsY8JuF+vQfrej6WY2PHP8LsHfaMKssl3jLLEDgF9IGihpCEGt5gcN1NdxHKd0esMm74tV4IwB4TOE/QcXmR0Vt7x7kCrC0GY2B5iSzzOzNoJEV9bfHsRN1YERwFPAr2kfrOvCzN4lBLldJH2kHh+S1iXsF3xspU5m9iTwJ4ISy/HA78xseo37XcjacZweoRVLPpqVxW2Mc2fgb2b2jKQ3oibowsWssftzK+CH+RslLQ8MI2zEnudKgqLJz+Nu+l8CKhujj475fwROkdRiZvMbeQgze0fSzFifVwgb2WclHA4ys7s7cLEHQYfzbmA9SSub2SvAzwji2/OALTso34WsHcfpEZq5JZnKYtXiJASxq+L5VXzYAqwEnleAl+Km5xW2lfQYYQeJm83s5bxTM5sMDIlyaTsCD5jZm3FR7ZeAG83sHeAB4IslPUt2mnW+q7ajoAnxdYit5euI2wGa2XsElZTLzWxuSfV0HMcpDSvwr1lZbFqcsVvzc8DGUUKsP6G1dD4x8MSJNPdK+mpc/AphjHMnSWsD90uaYGbVBPquJLTkPsmH3bRfBJYDnpAEQW5sDvDnBp9laWAo8AwFFFnivRsTWqq3xjotAcwkaH5C8w8POI7Th+kNX06LTeAkbJd0uZntX0mQdCeZvQrN7HVJRwFHk9t6ycxmShpHGAOsNlZ5ZbxnWT7UxRwN7GdmFRHppYCZkgbX+xBxnPZXhFbsW5IKBc5Yp7FmdmrG50xJa5nZv+utV1m83j/9V2LqH9CARDHgJ5dMXyvdj4FJdvd+9uwku9aWuj8SNRmc+FK+1w+WKvnbaEhNRb72zB6QVsmXB5T/VZMqPD1ui+M46uETk2znvz4jye7U1I0S+g1hp7Z302z7CL1hOcriFDhHE0RIs1xHCJJZbgTGSqomTX8BcLikofkMM/unpPeAh83svRgcRxIm8lRs3pN0D/CVmLSPpF0ybrY2s6xwdpY7FJqI/QhC1Nm/5PwY5yVmdk48bydKTRDd/lLOd0XoOv/6OH2Eg57/fan+xq2VvgPU4kDLCut0apMaNIuy+fN/7NymS0pOY+tu/tZY/MPmYhQ4zWy7KmnnAOfk0gzYNJM0KZM3hw9n1Y4nJ54dl61Uzt8HFpn1ama7Zi7H5/Nr1H1oB3mzqCHWXeO+w6rYHZY5H5tSJ8dxnJ4gtaegmVlsAqfjOI6z+NPMk35S8cBZIpIeAPI7c3/LzJ7oifo4juM0Gz45yGmHmW3V03VwHMdpZrzF6TiO4zgF8Ban4ziO4xSgtRdoQHvgdEqltQt8rpKogTy7wKc5dcus1GWpiVrShdawvaqueDXTeFHpu0quaOV+jcwt8Br1L7Hc5LWZwNGJ60KdRfF1nI7j9HnKFn8eu9aePVa20/X0hjHOxW2v2lKRtIqkqyRNl/SwpJskfSLmLdS7zNiPiFqgX8mk/VnSiHjeImmcpGclPSLpvopGZkaTs6K5eU5MHy/pG7l6DZX0ZJX6jo+7BFV8/COm7yPpNUmPxrJvlrRNF7xkjuM4DdEbZMX6bIsz7uJzA3CZme0R0zYFVibsIbtQ7xK4NHPrbOAYgoRXnhOBVYGNzGyupJVpr+G5nZm93mDVjzCza6ukX21mB8bn2A64XtJ2ZvbPBstzHMcpjd7QVduXW5zbAfPN7IJKgpk9ZmZ3V9O7zPAY8LakHbKJcYu+7xEkweZGf6+Y2YSufIhqmNkdBNmwMd1dtuM4Tkd0lzqKpI9IujX2wt0apSXzNsNjz+BTkh6XNCrFd18OnBsBD9fIW0TvMpd/MiGoZvk48FyUH6vFHZlu1kPrqTRwesZHRwM8jwDrV8twIWvHcXqKVrPko0GOAm43s2HA7fE6z/vA3ma2IWFv8rMlLdeZ4z7bVdsJo4GvmVmbpIreZUW2CzO7SxKSPlPQb1d21eapOc/Thawdx+kpurGrdmdgRDy/jLBv+Y+zBmb2TOb8RUmvAisC/+nIcV8OnE8RpMrakaB3WaHS6qwslpgGfEzSMp20OruLzQAf33Qcp6noxkk/K5vZS/H8ZcL8lZpI+hTh+356Z477cuD8O3CKpDGxBYakTYBfUkPvMnuzmd0iqTIZCDN7X9JvgV9K2t/M5klaERhhZtd010PF+n6WML65iKJMd/CxBWmLGme0pP3ynNaS9qf2CvOS7ACWSByl2KJ1iSS7nYY9n1z2iTNXSbJbv7UlyW69efO5deWkoRlmtKT5XLdfmt0L/Vo5cmg1edv2fKfl7SR/AG9rmSS7FpRU9h6t7yf52wn4c78hSbZFSJUrOzlxHekLSvucf2Bp64A3Jl1L9sh/Ny5fV2TsUtIY2s/VuKjyfR3zbwOq/UEd065MM5NUs2BJqwKXA982s06/cPps4Iwv5NcIfdo/Bj4AZhGa9v+XM6/oXT6QSz8ZyIrtHQucBEyV9AHwHnB8Jv8OaeGq9sfNbO94fqGkimLy84Su4vUkZbU9K2Oip0vKjq9+Kv4/KnYdDya0kL/eEzNqU4NmXyU1aHYFqUGzL3N8yetCyw6avYEiXbW5YaVq+dvXypP0iqRVzeylGBhfrWG3DPAX4Bgzuz+lXn02cELo0wZ2T7DLamBOyqRPJDOWaGbzgCPjkfcxtIbvfWoUW+1brlbLdTyJ2qCO4zg9iXXflnsTgW8D4+L/iyiKS1qC0DD6XeLcEaBvz6p1HMdxuplWLPlokHHADpKeBbaP10jaUtLF0WZ34P8B+2RWKwzvzHGfbnE6juM43Ut3zao1szeAz1dJnwzsF89/DxQeuPXA6TiO43Qb3dhV22V44HQcx3G6jd6w5Z4HTsdxHKfb6A3qKB44HcdxnG7DhawdJ8dzA9L/KAZZ2prPVEnl1bRkctn9Eqv5aqJS8oUz1kiyWyHNHQD/TZzzPnlgz63PHGxplbx23iL7a9ck1TJ1B5qb+y2dXPbmyZZppK7PPKaAMHaq4Hbq6zO/m1uA3lXrOI7jOAXoDYGzKddxSjomI/MyRdJWkiZJejqz1ubajP3ekp6MQtGPSjo8pk+StGXGbqFAdBSlfjv6+pekMzJ2+0g6L9ajUl5r5vyHUYpG0b5/LLeqeLSksZJeiPc+K+l6SRtk8qs+W7zv8Bo+V5A0X9IB8fp7kq7O5C+jINC9Tn3vguM4TvmYWfLRrDRdi1PSpwnbRm4exaBXIGy8C7BnXIOTtd8ROAT4Qtzdfklgb9K428x2kjQIeFTSDWZ2byXTzE4mbKuHpHfNbOHC2FjPfYGLgYOAyWb2jw7KOsvMzoj3jgL+LmljM3ut1rN1wm7A/YTt+S6I9fiOpO3N7DbgBOASM0vb88txHKcb8BZn17Aq8HpGDPr1uDVeLY4GDq/YmNlcM/tNkQLNbA4wBVi9wG2HAkdL2hA4kJxcTSflXQ3cAnyzSD1zjAZ+BKwuaQ0LP88OIOy9uyVh4e/pDfh3HMcpne4Ssu5KmjFw3gKsKekZSb+KSh8Vrsh0Z1aCQkeC1EkoKIMPA+5KvSfK1ZwN3AecZGZvFiw2LzRd7dlq1XdNYFUzexCYAIyKdXocuJkg2npQ3Du32v0uZO04To/Qam3JR7PSdF21ZvaupC2AbQmyWFdLqih3F+3OrPaTJZu2raTHCEHzbDN7uWB1zwfGmdn4gvfBokLTRZ5tFCFgAlwFXAKcmanTjmY2qdbNLmTtOE5P0cxjl6k0XeAEMLNWggrJJElPEHa2r8VTwBYEfc08b9B+dvtHgNcz15UxzrWB+yVNMLMpBerZ1pHGWydsBhT5EZBlNLCKpD3j9WqShpnZs4RZ6M37U81xnD5NbxjjbLrAKWk9oC0GAYDhwL8JXbLVOJWgUfllM3s5ysTsbWYXE4LvXpJui2OA3wbuyDsws5mSxhHGKTtXxm0QSV8HvkAYoyx67yeAIWa2eibtZ4R6n1BaJeukiBpn6h/Q4MT1ni8rTbgXYEjiKMXB+6bV8dRL0uwGJD4LwBKJ3y/zEl0mLkkNtollv9Ev7TdaV4wJpf46PGLvnvuiThWdTl2bCXB04prPQ7c8OsluYDeP2DXz2GUqTRc4gSHAuZKWAxYA0wgK4NcSxgHnRLvXzWx7M7tJ0srAbXF5iBG6LiF0R64PPBZbhpMJk4mqcQFwuKShXfBMAIdK2gtYCngS+FxmRi1UebZ4fqykQzJ2vyHox2W5DriaJgicjuM4HdHmXbXlY2YPA9XWQ47o4J5LgUurpM8jzHitds8k2otSz+HDWbXjyQlDm9mQGn6qpudsxgJjO8gfUc99GbvHgU/G81nUbp07juP0KN7idBzHcZwCNPNs2VQ8cJaIpGMIGxNkuSZupOA4jtPn8a5apx3ZnYYcx3GcRfGuWsdxHMcpgLc4HcdxHKcA3uJ0HMdxnAK0Wvp662bFA6dTKqmbFRRhmcRJeJvMTf8lu/yA9xMtBydZPc/cJLsxc9NfnysHpm1Z8D5pX0RLFljo3l9p9Vy/NU1E+61U5XBg48T38fmWtOexuanvdfl8kBgkiswzTd3Y4KzJpybZnbhl+uYLZdBdW+5J+ghhfftQYBawu5m9VcN2GWAqcKOZVV3CmKUZN3l3HMdxeiltWPLRIEcBt5vZMILwxVEd2J5IAZGPTgOnpHc7yDs7CjT3k7RxRt3jTUkz4/ltUUB6TiZ/iqQONTMlDZdkkkZWq0/O51RJv5PUEvNaJI2LotGPRNHpHWPeLAXB68cl3SlprZz/GyXdn0vLClFPib4fiOfPSXotkze0xvNUyn0i1vckSQOrPEu71yfet0INn4dI+kDSsgrcU3nOmL+bpL919Do7juN0J90oZL0zcFk8vwzYpZpRFBVZmaDMlUTdXbWS+gFfA54HPmtmdxD2lUXSeODPZnZtvB4KTM8KQScwGrgn/l/ry3+6mQ2X1B+4FdgduILw62FVYKMohr0ykJUn287MXo97vB4LfC/WcznChvHvSlonJwK9UIg69zrsA2yZ0rzPlDuEsB3ghXy4gX3R1wfCa/MQsKuZXSrpAOAaSXcQ3ttTgJEdOXAcx+lOisyqlTSGsOVqhYuiulMKK0f5R4CXCcEx778fQVlqL2D7fH4tGhnjHEFQJrma8AW+yObp9RL3nN0N2AG4W9JAM/uglr2ZtUp6kCDqPJgQCNfOiGG/wocyXFnuAw7OXO8K/Al4BdiDEHhKJ0qnHQA8H/vhCyNpXcK+vt8HjgEuNbMnJf2JsFn9UsDvzGx6lXsXfhgvvPBCxowZkzdxHMfpEorMqs1JIC6CpNuAVapkHZPzYzWUrL4P3GRms5U4rg+NBc7RwJXAH4FTJLWY2fwO7NeVlJXsOsjM7q5huw0w08ymS5oEfJmwkXlVYpfnVsAPgY8Dz5nZOwnPMBK4MXNdURh5JZaXDZyVTdoBfmxmNyf4r4mZvSNpJkEL9BWKvT4QAvtVwN3AepJWjj8QfkYQyZ4HbFmjbNfjdBynRyhzy72MGMYiSHpF0qpm9pKkVYFXq5h9mqDL/H1CQ2QJSe+aWUfjofUFTgXpri8Bh5nZfyU9AHwR+HMHtxXpihxNCArE//emeuCsBJu1gb+Y2eOSNknwf0ds6b0LHAcQu3OHAffEXyfzJW1kZk/Ge6p21TZI9idOPV3ZX4uaoNcRWujnmdl7kq4G3q20uB3HcZqFbhSynkgYChsX//9jlbpUNI2zw24dBk2of1btF4HlgCckzQI+Q0k6lnG88uvA8dH3ucBISUtXMa8Em3WBLSR9lSBD9jGF6cW12A5YC5hCaKFBGB9dHpgZyx1KF2pzxucZCjxTx70bE4L8rbGue9C+ri5m7ThOU9Jmlnw0yDhgB0nPEsYvxwFI2lLSxY04rrerdjSwn5ldGSuyFCHgDDazRhdNfR543My+WEmQdBlhItLvqt0QJ9wcBRxtZhMl/Rb4paT9zWyepBWBEWZ2TeaeBQo6l09IOik+00gzuy+WuTZwG7m+8jKIk4N+RVgz9JakZQu6GA2MNbOFC7UUZjGvZWb/LrOuRRlU4LM+q3/aGrcPlPb7btqAImtIByZZ7Xh+mhDxyP5p/m4YmP57ZmVLe+4W0tZSzuuCXvnU93Bwgd/o9w1Mq2dr4vrVJy9PLpqtf55um8LGieuA5xd4b1KFp1PXZx43OU0Yuyy6q8VpZm8Q4kk+fTKwX5X08eTkJGuR8g4MljQ7c/yEMDb4l0yB7xFmwH6lAz/r5pZbHFzDbjTVhZo7a/3dGOu6LWGm7GvAVElPErqQFxnzjDOurgR+QGiB3p/Jmwm8LWmrTsotwh2xPg8CzwH7Z/I6en0ez7z+vyC0MPOv0Q0x3XEcp2npxnWcXYa6sb/ZaU5K/QD8as29OjeKpLZWlk1seb2j8nund5yzIMnupf5LJNk9vER6HVOfu4W0lnZXtDhTX/MiLc65iaMMqRu3fWNe+lD/1i9en2ybwmlrpf09FGlxvlXya16kxdmywjoNbw22zFLrJD/sO+/NKH8rshLwLfccx3GcbsOFrBskzsZdMpf8LTN7oifqUwa98Zkcx3HKwmXFGsTMyhw/bAp64zM5juOURW8YHvSuWsdxHKfbcD1Ox3EcxymAtzgdx3EcpwC9YYyzkMSLH33jAMb0RZ9ex+b16XVsbp997XAha6caXSGXsjj49Do2r0+vY3P77FN44HQcx3GcAnjgdBzHcZwCeOB0qpGqsN7bfHodm9en17G5ffYpfK9ax3EcxymAtzgdx3EcpwAeOB3HcRynAB44HacEJPlmIo7TR/DA6SyCpOUkHdPA/T+W1L/MOnU3dQTCB7ukIk47JJ3R03XoKiQN7ek6OGl44OzDSFpT0kWS/ixpP0lLSToTeAZYqQHXawIPS/rfcmpaG0n9JO1Z5733ZM4vz2UXDYSlC+5KOjJzvlsu75Q6fZ6dOf9hLm98PT67md2L3iDppq4ISpLWk3SmpL/E4wxJ6zXg8jZJR5XZe9FVz97X8cDZt/kd8CJwLrAhMBlYDdjEzH7Y0Y0dYWYHAt8FTpf0W0lbStq8ctTjU9Iyko6WdJ6kLyhwEDCDOr5MI0tlzjfMF1nQ14qSDqt11Fm/PTLnR+fyRtbp8/9lzr+dy9ukqDNJMyXNyBzZ6+l11rHDIuu451LgFknHSGoppRLSp4FJwH8Jyzt+A7wH3CFp6zrdbgasTPjRuW0Z9aQLnt3xTd77Oh8xs7Hx/ObYqtnTrHGJdjN7RNJPgOuAdWGhlpABn6vD5eXAW8B9wH7ATwhforuY2ZR6q1lnXjX6A0Mot+WpGufVrsvwWQ9b5q77EX7IHA48Wo9DSR+plUUddTazayT9FTgOmBx7F9oy+b+oo5rHA6PNbFIm7UZJfwd+CuxYRz3/CxwqaQvgdkmzYz0Vsq3wD5suevY+jwfOPo6k5fnwy+gNYFlJAjCzN+v0uRJwJrAO8Dkze6yEqq5jZhtH/xcDLwEfM7MPGvC5nKSvEb7sl5O0a0wXsGxBXy+Z2QkN1KUaVuO82nUq/eJ73i9zXnn/C49Lm9kbELrMgW8BRwBTgC+b2dQ66/gw4fmqBcn5dfqcR2gRLgksTSZ41Mm6uaAJgJndKanuDQYkfQ74JXAxcD6N1xPKf/Y+jwfOvs2yhC+p7BfUI/F/IwS+engAOBXY23I7bEj6HzN7qA6fC78wzaxV0uwGgybAncBXM+dfyeTdVdBX6WOcwKaS3om+B8XzSlkD6/SZf88fyeQVDsax+++7wKHAPYQegGl11i1UwmztRu7PI2kk8AtgIrC5mb1fgtv/dpD3Xj0OJV0FrAF808yeqKtWi/rsimfv8/jOQU7pSFrRzF7LXG8AjI7Hf8ws372X4rOVD7+QBAwC3ufDbqxlGq54A0haEWjNJBnhWXv1H1jsTlwAnA08l883s+tLKmdd4JvAHmaWH4/u7N67gQPM7Klc+prR3+l11OdV4KpqlxIgQgAAIABJREFUWcDuZrZyHT73M7OLc2l1P3e8v/Rnd7zF6eRo9A8VwMxeizP5KsFyPrAWsKWZzarTZ+nLWzqbtFNw/OdBFu1eHCLpMWC/ep67g7G+Sv0Kd6V3NjnLzB7pKL8KtxGee9N4tHMH1B04Ja0GjCJ8Hjcm9GLs0eFNVTCzhRNt4g+c3Qify9WAG+qs3hEd5E2ux2ElaJb13NFnVzx7n8dbnE6tP9Tr6+0uknQfsAzhF/lVZvaspJmNdMFJ+pyZ/T2er21mMzN5u9bTspHURhiP+yswl1x3q5n9rN76ZutGEA4uPAs21q/SoiNXPzOzwl3p0eeTwOs1fNYzcatUJI0hfLmvDkyIxx/r/fxIWhrYlfD5/gQhmI8yszXKqfEi5Q0wswWdWy5yX6nPHX1267P3GXpaSduPnjsIgrZ3ENZtnkRYjjCzBL83ErrtzgO2iWkzGvT5SLXzatcFfG4KjCMEz98C2xN/TJb8Otdbv7OBx4BfAduWUTfgEMJY5F8Ik3mGlOBzI+AyQktrcjzfuAF/8whjzltm0ur+/ABzor+Fr2EJn8d7MueXl/R+l/rcXfXsfpiv4+zjnEeYXflNMzvWzB6n/tmaCzGzXQgt14eBsZJmAstL+lQDbktfmmFmj5nZUWY2nBA4dwamSvpqJ7cmI2kIda6XNrNDgOHANYQg96ik0yTV3QIxs7PN7DPAQYSNKm6XNEHS8Hr8SdqZ0OV3J2GS0Hfj+fUxrx5WBa4EzpT0tKQTgUbWIB5NmFH6K+DoOBzRKGWuAa5Q9nND1zx7n8e7avswkj7Kh2MeqxC6hvYxszVLLmclQlfwHoQlJIX9S3rEzDbPn1e7rsP3ioS1h7sRxmOPM7P7C/qoNl66PGHW7nlm9pt66xf9L0d4/U4EftKov+hzw+jzW8CRZjahDh+PATtbbgw3jnH/0czy455F/a9JeG9GE4LVDWb2kzp9rUN43tHAMMJ6yxvM7Jk6fHXZ5zH6WIPwN9Pwc0d/pT2744HTiZT9h5rxuyKECUPxei0z+3cdfv5DWCIiQrdTZbmIgM+Y2fJ1+Pwu4Ut5IHAtMMHMXi3qJ/r6aS7JCOti77L6x4qXIrSCRwErEsanJpjZIrNXC/isfIHuDDxPGIf+i5nNqdPfU1ZjEpmkqWa2QR0+zwf+YGb35tI/QZi01vB6WUkbET7ro8zs43XcPwP4EaE34XTChg8QPo+nmVlpLbv43KPM7MSS/DX07I4HTqcKjX5BxQ0UfgocyIeL6hcA5zbg87Md5ZvZnXX4rEyUqQTydn8MZlZXl23snsXM3q3n/oyf94BnCcHt2Sr1q3dC1OPAH4F3qvgstJNMbHF+JR/MJa0F/Mnq2O1GYQ/dPQhdlxOAK82srl2IEso608x+VMd9l3aUb2bfqb9WVct7zsw+VrLPup7d8cDZp5F0pJmdFs93M7NrMnmnNNAldhhhy7ExFme/xpbOr4G/mdlZjde+ccoOxpL+jzCmVBn/ehf4uZn9qs76jaf2mLOZ2Xfr8Dm2A59YwZnEknYBTgNOIYxpQ9iG7yjgx2Z2Y9E6ZnyvRQigexDW7V5JaIk+W6/PKmV0RUD6upldV7LP57tgCKX0Z+8reODsw3TVOI2kR4EdzOz1XPqKwC1mtlkdPocR9qd9i7ATym8IXbbTgX3NrK61c2Uh6VhgG+BAM5sR09YhbJ/2gJmd1JP160okbUrotqx02T4FnGnlbLVYKWMz4BKCAEFpa3oXl4DURT5Lf/a+gm+A0Lfpik3EAVryQRMWboxQ7yzBSwlqLssQtvQ7BPgaIXieD2xV1KGkJ+i49VWkm/FbwKaW2QbQzGZI2p2wpKRw4Cx5g4aKz3Pp+JkPLuozBsi9OyvXzA4q4ldBXmtHQovz8wQ1krFF69fBRhJ1bRqfUmRdN9V+v0UQEKjHZ3c/e5/AA2ffpis2EYewHq2evI4YYmYXAUg6INOtfKukercN26nO+6phVmXvXDObE8cV62HpButUjZ5qmSdrs0ragTB55cuEH0lXEbr969oDlq7ZNL4j6v3b6ej9/mWdPrv72fsEHjj7Npuo/E3E4cPNyfM04jcbfPK+6w1MvzGzL9R5b54XJH3ezG7PJiqoXbxUp883zOy8xqvWjvXKmC39/9s782hZqirN/z5AARWeUCAqSFUBIiIyU8XgACKgQCmCjELTVaBtd6kMBYWUOBbCcgGKiMigCFIlSDEW3RYyIyA08yQg0Ewi8wyKoPD1Hyfy3bhJZr6Mk5E3M27u31pvvRhu7jiR777YcfbZ+9tDZn/SeuY/2X56UGOuWTQeekYrRCrtqkzV9eU+bdZ+70GscU40Sn36/pdL8nXjiqQ/AHeTHkzLF9sU+8vZfmO3z/aweUPOemsXW+8hZapezvQkmQ1IdY6/7vbZHjYHrgecCZt1X7dHeBGortEraWfb/1Zsb1Auc5H0uZyXkyJxqdcYc0quTrW9XbH9Ldv7lc6dl/OSN4x7D8JxTjSSPgl8kySRdojtsQ3dDOlBdQ9T9XedbFYq95C0EEkTtJUkcxvw751CuH3aG4bjvAnYkC7rW1WdUoXr9v2SoqQ01S28aFfU6B22WEGH611hu+/QdOlzc7+jDuPMesmb6XufFCJUO8HYPk3SuTSgO3yOY+yDOaR1zo4PaCp29igc5PG9fkbSlbbX69NkK5T+GjPkt1Jbidf2YG0xSA/WuSg1x25vqdb3Gt0QwovDSoLrRm72a69ZTO4MZ6bvfSIIxxk0oju8pOeZ/vAQU7OSXCdyf04t5IBUWeO9pa5Qconb6rQp6SskNaM7JC0InEsSz/+zpJ1sXwBg+4QarrUisK/tT1f86LCS4Pq5XhXeUJTdzEfKOViDqezXhWsYy0zc+0QQjnOCUbO6w19ISro4g9SqLFt2rsQo3rhn28Nqe5J+LsCuxd9LklpYnUjq11kJSasCh5J6Rp5FKjc6klRydFjGGFeSdDPF+nixTbGfNcNWahfX8RT5Tu5h0v9HgEdK2639HGq/9yAc56TzJWDbnMSVmcb2VpLmkHoLHlesJ/6M5ERz1+V26eeHKoZX6+Q/5v0jIGl/2wf3abOvkGmFusuXSyHZzUj/Hq8Atxd1mDkcR1KZuhL4CKnt24nApzLXi9+dOY5e/F2Pc/87x6DtjTLH0oth3PvEE8lBQeOQNB+pKP4I4KBhr8XWnH1bm62SzZFl30q6CtgdeBT4DbBWSWbxN7bflXHtG51avbX276maENTF7ptJnUEA7rT97KA260apY9FOpLVogNtJMoMDJW014d6bRPTjDBqDpPUL5ZvrSfJ2n5ihBKY63y77muVWZJRJHnuQOsvcAXyn5DQ3J/075bCQpDUkrSlpTeCltv1KSFqw0P29DziWNKO9T9Lxkl6fM0BJh5e292g7d0KmzXeTmg6sRWoufxewDnCrpJV6fbaHzdrvPYgZZ9AQJN0HPENSkbmI1G1lLrZzH9L9XHues68OyUtzT5GfvNQX41rvqUyxc0kX9zht2x+qaO9fSet5n7X9fHFsEdLa6f22v5wxxtrLPCS1Wtud2nZ8G1Kz+W0ybNZ+70E4zqAhSLqE3p1CKj1MK1679vBqnQwp/DuwTY1J9w1JtwJ/0578ptT+7Srbq2TYLNdcTvuuBnCcXUPbA4S9a7/3IJKDgoZge8O6bUpayfYdxfaCtl8qnVvX9lXF7jzDq5LWsX1Nl3O72D6plkF3pq8konkhadlStnKuNuo0kzXYmDKWNGz/2fYmFT/6aqeMcdsvSMqdOcxX1KvOV9pu3W9u95ZeWry5Or3DuPeJJxxn0Ag6pP8beAK4sRWCyuCnQGtmcGVpG+Co1r7tW/uw9SNJVwD7236mGPMqhZ2ngCzHKWkj4PNAa7ZxO3Ck7UtaP2P7oIo21wOWBn5p+7Gi/OOLpE4z7yhsnpAz3jayHsxK+r5HM1WO8i1SdxyRlK4qj6PNsZXJrVuew3QhifJSQa5Deos6d0gRqcQnh2Hc+8QTjjNoCp3S/xcnqevsZvuiDJt1qqqsCewL3FCsK70X2JwkVJ5VniBpC1L94jeArxdjWhM4Xkln9OcZNg8hqSXdCOwn6RekrNiDgZzG2L3Ezpeqaq/gMOAzpJeZjxZ/f3EAXdV2J1cmy8nZ/qvMsfTiOLp3SPlhps3a7z2INc6g4Shp2J5qO6cf5zASPPYlzZAeIq0tPVTVRsnWJcAebmsIXcwQv2f7gxk2byOJXfyxmIn8FljF9n2ZYxyGhnD7v0XW+l7Gdd/Tb02zpM2ARWyf1nZ8G+A52+cPY4zFNarU7fZrs+97D2LGGTQc2/crvzn2MpKOIL2Nt7Yp9peuYkjS8qRMRZOKzj8K/FLSN23/OHN8b213mgC2b5aUO5v7Y0tEwPbTku7KdZoFC/daJwZyNIbf3BaaX6C874ri+xU4ienh+l58Bdiqw/FLgXOAoTlOYFtShKBOqtz7xBOOM2g0kt4FvDTPH+zMvqXt9gbPVRs+/4IUTmzNQH4j6VTg25J2d0a3DIaTLLKcpP8s7f91ed/2xyra62uduCKXMj00/8vSfmXx/QpUCc8vaPvx9oO2n5BUucVdRYZRtxuC7xUIxxk0Aknn8No1mcWBtwE759i0fWKP61Uto1jd9gtt9h8CdpD04ZzxkbRF/7PD8UF0Rj/etp+j/do+lk7bnfb7wvbfd71Y/ky7r0tX+NlFJS1ge1o9cRH9yNWq7ZdxEqafSMJxBk3h0LZ9A08Cd9l+OddoPxmm/dDuNAvby5Pk03ZgqkdnFdqdXJn276MvbF+a87leJrtsd9rPopCL24b0Xb6blG07as4gaSZ/zvbvYW5t5HcZ3oy4RcwOR0w4zqARDOGBX3uGaWHz7aSOITuRMmsPJjnOHG6w3akfZ86MuPW5Xlmwr9peraLJ2taJ28a5MOnFYSdgDVK26VaksG1tSHp7KYGrygvYAcCBwP2S7ifd7zuAH5H62+aMpVw73Iu+63bbanN7kf3yOYlEVm3QCCTdS2/loOUzbNaWYSrpM8COJGdxavHnbA/QlLkt6/dC2xt3OlfRZqcs2NZDf3/bm1e0t2uv873C4T1s/pQ04z+PKYnFuwf5LntcayB1o8LBr1Ds3m37xQFsXQ9cA+zXqgUelNzfk6A3MeMMmsLabfvzAdsB+wA3ZNqsM8P0SFJyzE62rwWoQZmlHJJbvMe5vimXhyg1St6JlKV5L1BZV3Ye68S5z5eVgadJYg+3235liCo3Wd+jpA90OLyOlMzZzpkZrw18Abha0r/WpDYVYd0hEI4zaAS2nwRaLcV2IWXE3ghsYfu2TLN1ZpguTVqHO0zSW0kzztwymblD6LLdab8vJK1ImhnvSFJe+hkp8pTVC1LS5bbfV2yfZLssT3g1GVm1tldX6gayI3CBpCeARSQtZfvRnHH2ulzm5/btcMzAqqTZe2XZPduvAodLOg+4UtJRhc1BGgUsXQqfd7rmFzJsTjzhOINGUGQr/gOwF3A5sJXtuwc0W2eG6S+KkNjRkpYhrXM+Kul24Ezb/5JhsyXBJqbLsQ0iwXYHcBmwZev7k7RXpi2AculFewJU9mynqA39KvBVSWuRnOg1kh60vX4VW0qt6Lqt6745c3zTlKwkbUBa93yEJJGYhaTdSMlpXwK+78HX0l4kKQcFNRKOM2gK95JaiR0OPECS2lu1dTKnKL7mhKO5TsL2gyQnfJikd5Ie+jmUJdja5dhyJdi2JiUrXSzpXNIa4iDhvF4P9lrCq7avA64rVJne3zpeQUGnV01u1XrdaUjamJQMZFJT9WzhA0m/IvXNfL/tRwYZV4knc9aZg96E4wyawgWkh9NqxZ8yWUXxHTJMW8LxFwOHttY/+2TJLgLdAK8pVekH21/vdk7Snpk2zwLOKor0Pw7sSZrN/oA0Mz6vosk3S/oEac25rPgjkk5qbRSzr/LaYV8KOt0ch6SF6KyBPE+UdIS/BDwLHGD78hw7bZxiu2tYNZPIlh0CkVUbzCok7drvG3aXDNPFgV2BN9r+dIXrPgz8gC5i2ra/0a+tPq9XW6/LIqN4W2D7cuZun5/tKSfYS8xgUJTRM1TS/MBmpCjApsBltj+Zce1XgQeBm+gws85QYBpWQ/KDWssEkjYZpobuJBGOM5hV1PXwqfpQnum0f0m/td23QMNspMp3LumDpAzizUlJSxsAy7lDr8oK9rqSswwwJMfZtZFBkE+EaoPZRl3p9/ON6Lr9MhZvvD3C0wDY/vYwL9/XD0kPktbFfwDsY/t5SffmOk3o7hglvYO0hpyzfr6qpE6CF4Nk1QZDIBxnMNvo26FI6vT2vRhJ+7ZqHV6lEGc/SHqe7tmgw9ZD7ZdywtL/AI6ZwWv3q6BzGkl1aHvgFUlnU+OLh6QlSaHuHUlygGdmmrqlaui5D7plZgNDf7GZtUSoNphVVAmxSrq47VBL//YS4Fjbf6p5eLOanDXHHrY2IpV1tPpw3g4cafuSTHsCNiQ5t81JiUu7AT/vpDPch71FSBnKOwErkpLTtre9TM74Cpu1fX8lm1/tcbr2tfdJIWacQSOQtHWfJSdXVDB7pO3KajkzhaR2tSADz9RQ2zcs6hJ134KkxPQN4Ouk2dKawPGFqPrPK9p7a1HecTGpDOd1TCUIHQUskTHMx0hrpQcAl9t2kV08CH1r0PbLPDKz16n7epNCzDiDRjDsxIlxpKTPW17LW4SkmLT7APKAQ6HGxKxLgD3c1sS7qNv9nu2eiTkd7D0C3AqcDJxe1oGVtHCOvmxRDrQDSQDiZJIC0/m2c9u99RJqAOpR+ZG0MlPKUc/YbpeyDPogZpxBMKZ0EzUvaiWPBj4ysyPqOJZWLaxI/UNvbp0ihQJX7frh7ry13WmSjN2svH6cSwMfJjm6gyRdRXJ2Z+eKsts+nCSPt1xh9yzg7ZL+GTjL9p0ZZgcSY+iGpL9iyln+CfhLYO1xe/FqEjHjDBqBpD8AnST2sh/Qw7A5U4zLbLmQ67sCeIr0UJ5GWVS+gs3rbK9V9Vyftl8PfJTk7DYCLrT9qQw7KwBL2b6idOy9pH6cH7RdWat2Htfrtz1Y++euBBYlKUSdYvuuIqO49k4zk0TMOIOmcC+ZKi8zbHPoKDVMrlouMyyWJskgrgTcQnKivwJ+ZfupTJvLt4nvtxCQHQoFsP2yUju524G1SI2xczgc2L/N9i1FCPeg3PGppsbqJR4t7C1F0je+izEpZWoyMeMMGsGQMg5rt1knXWokFwM+RkpsOm6Gh9SVYia3NrA+sF7x5xnbK2fYGoa4QKu+ckem1iVPKcTkKyPpGtsdk2sk3WL7vRk2y43VVwDKjdWPqSgBWbY7h5QBvCPwTpKw/Wa2r86xF8SMM2gOVbJlB7Kp1Hpr3yqSe0NikbZ9k7pv7Gz7lhGMpxcLk0KCc4o/D5FmoDncYLuTEACSKssMFuLpS5OyVj9diMYPSq+uKrk1tlsAa7iGxuplbD8L/Bj4saS3kOpZv1OEfydafSqXmHEGjUDSP9E747ByIbek1YBDSEXrZwHfJ5VB/C1wmO3v5I12cpB0LKmd2PPA/wWuAq6y/fQANssycReW9XNz1naVmk5fVmcZj6STgYvaZ/2Sdgc2sb19hs1p9zbMiEjhmP/R9oHDsD/biRln0BTeVNquS6HmWJIM25WkDNUbgROBT+WGxepG0q7AHkwXAjjC9k9GN6ppLAssSFo7+x1J+PyZnp+YN+Xym/Za1hxpw22BTyYNhNeSWeaxJ3CmpE8x1e9ybeD1QG49Z52N1YG5IeovM/VyeDKpPnaXYjvIIGacQeOo601c0o22Vy/t3zNIHV7dFE5zT2Bv4HqmhAAOAQ63fdIIhzeXQpXnPaT1zfWBVUhZtlfa7qVc081eV2HyzBnnrr3Oe4B+lYXC0SrF7q9tXzSArWGs7V5M0s1tvRy2XhD3cn09PyeOcJxB46ix0P4OUsJEayry7yQJNQHYvn7QawxCUW+4Q/saV1GXd4rtdUcwrK5IWobUdWR9UpLLX9jutRbYzc6DwLdJ/w57FdsU+3vWuS6XW+bRFCTdZHu10v6DwLK2Xx3hsBpPhGqDSeZhph7KkBJvWvsGPjTjI5rOop0SQ2zfJ2ksOmVI+gJTM80/UZSiAMeTnxx0HFOJUeVtgB9mjrPuMo/aUb2N1ct2F2Pq5fBJYE4RJWCAkqGJJmacQSNoe6iswJRwwVDECiS9btQi78MUAqgLSd+mqN20/fAMXG/PQrWnymeGUuZRN6qxsXrJ5n3Aq3ReG/Y4LU00iXCcQSPo8lCZS45CTYdriDTL3AnY0naOvFttzEPZaDnbb5zhIY0cSQ/YrlSSUggerFl3mcdMMu41x5NGhGqDRlCHY+yGpHVJznIr0hv+PwL7DOt6FchVtZnN5GTV/rE1q7T9tKS7muQ0C7KUoiRtBixi+7S249sAz9k+v47BTRox4wwagaTdgMVtH1Ls/4609iWSWMHRGTYPIpUqPEBKzT8TuHZcdDwlrdRStpG0oO2XSufWtX3V6EY3GjJnnM8wvTH5B8r7OWUew0C9G6u/YPvzGTavALay/Xjb8SWAc2yvlzXYCSccZ9AIJF0DfMT2k8X+DbbXkLQQ8AtXbDVV2HgMuJOkO3qO7ZfGqSSl7rKMpiDpeTqLXQhY2HalSNkwyjyGgYbQWF3Ste7SOkzSzXXnBkwKEaoNmoJaTrPgPwCKdatcibO3AZuQSlIOLx5cC0tawPafBxtuLajLdqf9WYPtdqnBQe11dYySNqjzWoNge6MhmF200++zUjPv3P83E8+4dFgIgnkxrR7Q9kEAkuYDlsgxaPsV2+fa3hVYnqSscgXwO0k/HXC8ddBemtDt3KxC0uJtfxZrlU9k2ptf0o6S9pG0SnFsy0LD9sjaBj4gkvYuliTaj++m1HUlhzOA4yTNTSRT6q5zdHEuyCBCtUEjkHQU8JTtA9qOHwgsYfuzGTYXAj5LKlG4GTje9p+LGsmtRi1rV4SSTyHNLrcvtin2txt11u+wkHQvU82xWyxCKifZvWpij6QTSLWaV5N0iB8iyeN90fZZNQy5FiRdB6zbHpJV6jxzbU5YVdICwIGk8ptWgt2ypDrbL41JZKVxhOMMGkHxxvxDYB3gpuLwasC1pIfpCxk2f0Yq2r+M1Nz4Ptu5b/a1M0ypuCYiaWvgM7Y/UvFztwKr2n61eFl6BFi+LfQ/ctpVftrOZbUqK31+YdILIsDdtl+UtIFLjbiD/gnHGTQKScuRdFEBbrP9/wawNfdhVLyZXz1bE25mC5latY1IrCpEPj5s+9G240sBF+Q4TknzA9uRVJPOtX2rpC2BfyElWkVtaAaRHBQ0grZU/d8Vf89pHc/UlZ0bEitCtAOMsH4knUPvVmpjUUYxUxRrczl5GStJurllBli+2BfwardZ3gg4BPg/Si30Wr/PaxXHD820+SOmwtRHSBrLMHXTCMcZNIXDepzL1ZVdTVKrYbJIGbXPMSXjN2o92NbDUiTN1t1HOJYZQ9LeHQ4vBnyMvGSeTkISIjmU/TPsDQXbP5H0OKnt1yqk3+tfA1+x/V+ZZtemAWHqphGOM2gEvVL1C+WfHJvz549o+JTLKCS9MC71hjNAezmKSQ/8nW1XFo4vq05JWoOkErUtcC9w+gDjrJ3CQeY6yU683OqEUpRu3RNOc3BijTNoPDlqMsXnPuSif6Kkv7Z9b+nc1rbHJl1/XNflmoCkFUm1ujuSuo38DNjHdk/945lG0qm2tyu2v2V7v9K582xvmmGzrHcsUtnV3QypOcKkEDPOYDaQuzh5KKkxNKSZR9kxHcCI69wkLV7anV/T20PN6pZQRUbxHsC7ikO3A0dklgjdQcqc3tL23YX9vWoZaL28s7S9CbBfaX/JTJuhdzwEwnEGs4HcsMm4K/Ncx/R6xnIClIGxkAasm8Jp7gnsTbpnkV5qDpFk2ydVNLk1sANwsaRzmaqNHTd6/R5n/Y4PsznCJBOOM2gEPTJMBfxFptmxVuYZF7H5EfA/gU+0CR1cVHT0OAWo5DiL7NGzilrgj5Oc8lsk/QA40/Z59Qx7YN5QrMHOR0pUa0VARKY83jx0f8chAa6RxBpn0AiGIdRd6poh4P1MdcwQ8D7bi1W1WSeT2hJK0m22V656ruI1FiMlCG1ve+NB7dVBoZVcjjCUH84akpZtkEE4zqARSFrW9gM12xzrrhmT2hJK0nW216p6rulI+hvgt7YfLvZ3BbYB7gO+VteadjHz/gSwo+0t6rA5aYTjDBpBW4ut021vU7P9JQHandQomdSWUG2ZoNNOAcvZfmOHc41H0vUk5aCnJH2AFJb+PLA68G7bnxzA9uuBLUilOJuRkuHOsH3O4COfPGKNM2gK5WSOWpJiio4bXyE9nOYrDv0Z+J7tb9RxjQGZ1JZQk5oJOn9pVrk9qQfn6cDpkm7MMShpU1IZzqbAxcBPgHVs/30dA55Uoq1Y0BR6JfLkshfwPtKDZPFiTfNvgQ3GpFyhW0uoY5jdLaEWtn1/kRH6SGu72H/bqAc3ROYvNJMBNgYuKp3LneScS3rRfJ/tnYsZ5qsDjDEgHGfQHFaT9FyRJbhqsf2cpOdLsnlV2YW0zjNX+MD2PcDOwH+rYcyDcgDwKHC/pOuKtlP3Ao8V52Yr5V6oV7adO2omBzLDnAxcKuls4EVS7SmSVgCezbS5Juk7vEDS+UW/z7FWzGoCEaoNGsGQ5PFeZ/uJDtd6vAiHjpo1gO8CXye1hNoQ+DvgDSRZutkqgDDu9bVDwfY3JV1ImlWf56kElPlIywk5Nm8k9TH9oqT1SWHb10n6L1IpzrE1DH3iiBlnMMm8nHlupjgGeMn2iySR8/2LY88Cs/mBN9b1tcPE9lW2z7T9+9KxOzO7/7Tb/pXtzwPLAN8B5mo8S3pP1w8GryGyaoOJRdIrwO87nQIWsj3SWWe5sbGk7wOP2/5asX+j7dVSm2zbAAADb0lEQVRHOb5hIekxptR9ti+2Kfa3s73UqMY2Wwkt5GpEqDaYWMa9OwpFskiRVbsx8JnSudn8f3ff0va1befa94N6mLUh8GEwm//zBUHTaSWLPEF9ySJjj+0TRz2GCSRCjxWIUG0QjDFFr9FWssjvi2MrAm+qY91rHOmhSwyA7Y/N4HAmggjVViNmnEEwxti+qsOxO0cxlhnk0OJvAccBu49wLJPCOCTDNYaYcQZBMLZIusH2GqMeR1ORtLPtfyu2N7B9Renc52wfObrRNZcoRwmCYJyJN/vB2Lu0/b22c/8wkwOZTUSoNgiCsULS4qXd+YsWYHOzPuvqEjIhTKSYxLAJxxkEwbhxHdP7UpaToExNIv8TwsSKSQyTWOMMgiCYpZRatAlYnql2bbO6RduwiRlnEARjhaTNgEVsn9Z2fBvgOdvnj2ZkjWRSW7QNlZhxBkEwVki6Atiqvam4pCWAc2yvN5qRNQ9J59nedNTjmG1EVm0QBOPGgu1OE6DoZBOhxWosOeoBzEYiVBsEwbixaEmjdy5Fq7eFRzSmpjJH0tbdTtqezQ3Rh0Y4ziAIxo0zgOOKAv2WzOCbgCOKc0H/zAG2pHPpiYnvM4tY4wyCYKyQtABwIElq7/7i8LLAj4Av2/7TqMbWNEKDdjjEGmcQBOPGGsB3gXcA/x04AbgBeAOwyMhG1Uw6ihxIWkjStjM9mNlCOM4gCMaNY4CXbL8ILAbsXxx7Fjh2lANrILu0NiTNL2lzSSeRZvLbj25YzSZCtUEQjBWSbrK9WrH9feBx218r9m+0vfoox9c0JH0Q2AnYHLga2IAkfvCHkQ6swcSMMwiCcWP+Yp0TYGPgotK5SGisgKQHgYOBy4GVbW8DvBhOczDilzAIgnHjZOBSSU8ALwKXAUhagRSuDfrnNGArUlj2FUlnExq1AxOh2iAIxg5J6wJvA84rlaSsCLzJ9vU9PxxMQ5KADYEdSeHaOcBuwM9tvzDCoTWWcJxBEAQTQiEisRnJiW5me4kRD6mRhOMMgiCYQCTtb/vgUY+jiYTjDIIgmEAkPWB72VGPo4lEVm0QBMFk0lEcIZg34TiDIAgmkwg3ZhLlKEEQBLMUSc/T2UGK6DSTTaxxBkEQBEEFIlQbBEEQBBUIxxkEQRAEFQjHGQRBEAQVCMcZBEEQBBX4//0shkHZXx07AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light", + "tags": [] + }, + "output_type": "display_data" + } + ], + "source": [ + "sb.heatmap(corr)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 837 + }, + "id": "YhgZYhwKxHJJ", + "outputId": "e438d733-a2ad-4b26-e4fe-a6b49301f47a" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YEARMONTHDAYDAY_OF_WEEKFLIGHT_NUMBERSCHEDULED_DEPARTUREDEPARTURE_TIMEDEPARTURE_DELAYTAXI_OUTWHEELS_OFFSCHEDULED_TIMEELAPSED_TIMEAIR_TIMEDISTANCEWHEELS_ONTAXI_INSCHEDULED_ARRIVALARRIVAL_TIMEARRIVAL_DELAYDIVERTEDCANCELLEDAIR_SYSTEM_DELAYSECURITY_DELAYAIRLINE_DELAYLATE_AIRCRAFT_DELAYWEATHER_DELAY
YEARNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
MONTHNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
DAYNaNNaN1.000000-0.4970840.004412-0.138130-0.1243690.0600640.093451-0.119781-0.026285-0.018470-0.036330-0.035208-0.0957310.037407-0.110820-0.0916870.0707700.004847-0.0060000.097693-0.010550-0.0016030.0332130.061960
DAY_OF_WEEKNaNNaN-0.4970841.0000000.0109550.0469140.0451820.0556320.0072910.0441500.0197550.0290250.0306780.0246660.013749-0.0177890.0317250.0114770.067520-0.000709-0.006409-0.0196260.0081560.0036480.033729-0.050835
FLIGHT_NUMBERNaNNaN0.0044120.0109551.000000-0.0030270.0101400.0348630.0610100.016377-0.337801-0.318819-0.339135-0.356196-0.0036700.014464-0.0188910.0007530.0561630.0071550.090008-0.032564-0.0072600.0237700.0765810.004246
SCHEDULED_DEPARTURENaNNaN-0.1381300.046914-0.0030271.0000000.9431860.174254-0.0814960.912232-0.019873-0.025744-0.0119930.0003210.585786-0.0275020.7312400.5526530.1549510.002515-0.002631-0.112393-0.017957-0.0544190.186286-0.042004
DEPARTURE_TIMENaNNaN-0.1243690.0451820.0101400.9431861.0000000.243960-0.0700810.966477-0.031873-0.035204-0.024384-0.0165620.618850-0.0177590.7349700.5846150.2236540.0065760.009679-0.093096-0.012820-0.0133040.247325-0.046406
DEPARTURE_DELAYNaNNaN0.0600640.0556320.0348630.1742540.2439601.0000000.0619050.2313990.0058680.0152570.0027330.0045910.0906960.0402850.1551500.0796390.9508380.0207870.0308620.0857940.0080400.6069540.6052890.210402
TAXI_OUTNaNNaN0.0934510.0072910.061010-0.081496-0.0700810.0619051.000000-0.0431140.0961910.2157490.0772340.057871-0.0450960.009041-0.062325-0.0456110.2453630.0098100.0107630.407371-0.008021-0.024674-0.1298790.119412
WHEELS_OFFNaNNaN-0.1197810.0441500.0163770.9122320.9664770.231399-0.0431141.000000-0.038173-0.038217-0.031646-0.0272820.642358-0.0150890.7446970.6086110.2173440.0065240.001293-0.085582-0.013912-0.0173760.223010-0.055273
SCHEDULED_TIMENaNNaN-0.0262850.019755-0.337801-0.019873-0.0318730.0058680.096191-0.0381731.0000000.9804110.9908440.9788750.0194030.0646590.0355980.014674-0.0220430.015000-0.0740840.0568650.0097400.032593-0.084673-0.001975
ELAPSED_TIMENaNNaN-0.0184700.029025-0.318819-0.025744-0.0352040.0152570.215749-0.0382170.9804111.0000000.9852380.9589040.0221420.1489590.0312230.0167110.048448NaNNaN0.1908420.0077240.009438-0.1182900.014470
AIR_TIMENaNNaN-0.0363300.030678-0.339135-0.011993-0.0243840.0027330.077234-0.0316460.9908440.9852381.0000000.9761690.0278840.0507030.0413680.022517-0.002742NaNNaN0.0724360.0104420.022433-0.096358-0.006582
DISTANCENaNNaN-0.0352080.024666-0.3561960.000321-0.0165620.0045910.057871-0.0272820.9788750.9589040.9761691.0000000.0239400.0453890.0446150.017333-0.0238210.013996-0.0767960.0419630.0115470.030500-0.086155-0.010430
WHEELS_ONNaNNaN-0.0957310.013749-0.0036700.5857860.6188500.090696-0.0450960.6423580.0194030.0221420.0278840.0239401.0000000.0143320.7993030.9591770.088131-0.000289NaN-0.049010-0.012903-0.0565740.054199-0.057202
TAXI_INNaNNaN0.037407-0.0177890.014464-0.027502-0.0177590.0402850.009041-0.0150890.0646590.1489590.0507030.0453890.0143321.000000-0.0014400.0120950.1700730.006915NaN0.299436-0.005075-0.051595-0.004698-0.018058
SCHEDULED_ARRIVALNaNNaN-0.1108200.031725-0.0188910.7312400.7349700.155150-0.0623250.7446970.0355980.0312230.0413680.0446150.799303-0.0014401.0000000.7719450.1405650.005992-0.013131-0.064453-0.008270-0.0504350.146386-0.043930
ARRIVAL_TIMENaNNaN-0.0916870.0114770.0007530.5526530.5846150.079639-0.0456110.6086110.0146740.0167110.0225170.0173330.9591770.0120950.7719451.0000000.076791-0.002489NaN-0.052236-0.014825-0.0575570.050115-0.058355
ARRIVAL_DELAYNaNNaN0.0707700.0675200.0561630.1549510.2236540.9508380.2453630.217344-0.0220430.048448-0.002742-0.0238210.0881310.1700730.1405650.0767911.000000NaNNaN0.2597000.0060700.5927180.5729560.235906
DIVERTEDNaNNaN0.004847-0.0007090.0071550.0025150.0065760.0207870.0098100.0065240.015000NaNNaN0.013996-0.0002890.0069150.005992-0.002489NaN1.000000-0.007413NaNNaNNaNNaNNaN
CANCELLEDNaNNaN-0.006000-0.0064090.090008-0.0026310.0096790.0308620.0107630.001293-0.074084NaNNaN-0.076796NaNNaN-0.013131NaNNaN-0.0074131.000000NaNNaNNaNNaNNaN
AIR_SYSTEM_DELAYNaNNaN0.097693-0.019626-0.032564-0.112393-0.0930960.0857940.407371-0.0855820.0568650.1908420.0724360.041963-0.0490100.299436-0.064453-0.0522360.259700NaNNaN1.000000-0.014622-0.106087-0.1364110.019507
SECURITY_DELAYNaNNaN-0.0105500.008156-0.007260-0.017957-0.0128200.008040-0.008021-0.0139120.0097400.0077240.0104420.011547-0.012903-0.005075-0.008270-0.0148250.006070NaNNaN-0.0146221.000000-0.009884-0.0121360.000274
AIRLINE_DELAYNaNNaN-0.0016030.0036480.023770-0.054419-0.0133040.606954-0.024674-0.0173760.0325930.0094380.0224330.030500-0.056574-0.051595-0.050435-0.0575570.592718NaNNaN-0.106087-0.0098841.000000-0.084750-0.056336
LATE_AIRCRAFT_DELAYNaNNaN0.0332130.0337290.0765810.1862860.2473250.605289-0.1298790.223010-0.084673-0.118290-0.096358-0.0861550.054199-0.0046980.1463860.0501150.572956NaNNaN-0.136411-0.012136-0.0847501.000000-0.021674
WEATHER_DELAYNaNNaN0.061960-0.0508350.004246-0.042004-0.0464060.2104020.119412-0.055273-0.0019750.014470-0.006582-0.010430-0.057202-0.018058-0.043930-0.0583550.235906NaNNaN0.0195070.000274-0.056336-0.0216741.000000
\n", + "
" + ], + "text/plain": [ + " YEAR MONTH ... LATE_AIRCRAFT_DELAY WEATHER_DELAY\n", + "YEAR NaN NaN ... NaN NaN\n", + "MONTH NaN NaN ... NaN NaN\n", + "DAY NaN NaN ... 0.033213 0.061960\n", + "DAY_OF_WEEK NaN NaN ... 0.033729 -0.050835\n", + "FLIGHT_NUMBER NaN NaN ... 0.076581 0.004246\n", + "SCHEDULED_DEPARTURE NaN NaN ... 0.186286 -0.042004\n", + "DEPARTURE_TIME NaN NaN ... 0.247325 -0.046406\n", + "DEPARTURE_DELAY NaN NaN ... 0.605289 0.210402\n", + "TAXI_OUT NaN NaN ... -0.129879 0.119412\n", + "WHEELS_OFF NaN NaN ... 0.223010 -0.055273\n", + "SCHEDULED_TIME NaN NaN ... -0.084673 -0.001975\n", + "ELAPSED_TIME NaN NaN ... -0.118290 0.014470\n", + "AIR_TIME NaN NaN ... -0.096358 -0.006582\n", + "DISTANCE NaN NaN ... -0.086155 -0.010430\n", + "WHEELS_ON NaN NaN ... 0.054199 -0.057202\n", + "TAXI_IN NaN NaN ... -0.004698 -0.018058\n", + "SCHEDULED_ARRIVAL NaN NaN ... 0.146386 -0.043930\n", + "ARRIVAL_TIME NaN NaN ... 0.050115 -0.058355\n", + "ARRIVAL_DELAY NaN NaN ... 0.572956 0.235906\n", + "DIVERTED NaN NaN ... NaN NaN\n", + "CANCELLED NaN NaN ... NaN NaN\n", + "AIR_SYSTEM_DELAY NaN NaN ... -0.136411 0.019507\n", + "SECURITY_DELAY NaN NaN ... -0.012136 0.000274\n", + "AIRLINE_DELAY NaN NaN ... -0.084750 -0.056336\n", + "LATE_AIRCRAFT_DELAY NaN NaN ... 1.000000 -0.021674\n", + "WEATHER_DELAY NaN NaN ... -0.021674 1.000000\n", + "\n", + "[26 rows x 26 columns]" + ] + }, + "execution_count": 37, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "corr" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pnx2TjlzHMEc" + }, + "source": [ + "### Data Preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pftA6NKayM4h" + }, + "outputs": [], + "source": [ + "flights_needed_data=flights_needed_data.drop(['YEAR','FLIGHT_NUMBER','AIRLINE','DISTANCE','TAIL_NUMBER','TAXI_OUT',\n", + " 'SCHEDULED_TIME','DEPARTURE_TIME','WHEELS_OFF','ELAPSED_TIME',\n", + " 'AIR_TIME','WHEELS_ON','DAY_OF_WEEK','TAXI_IN','CANCELLATION_REASON'],\n", + " axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "oSQQ10_P1gqY", + "outputId": "ed6916f7-3a1a-4464-c850-f221ef48a76f" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MONTHDAYORIGIN_AIRPORTDESTINATION_AIRPORTSCHEDULED_DEPARTUREDEPARTURE_DELAYSCHEDULED_ARRIVALARRIVAL_TIMEARRIVAL_DELAYDIVERTEDCANCELLEDAIR_SYSTEM_DELAYSECURITY_DELAYAIRLINE_DELAYLATE_AIRCRAFT_DELAYWEATHER_DELAY
011ANCSEA5-11.0430408.0-22.00.00.0NaNNaNNaNNaNNaN
111LAXPBI10-8.0750741.0-9.00.00.0NaNNaNNaNNaNNaN
211SFOCLT20-2.0806811.05.00.00.0NaNNaNNaNNaNNaN
311LAXMIA20-5.0805756.0-9.00.00.0NaNNaNNaNNaNNaN
411SEAANC25-1.0320259.0-21.00.00.0NaNNaNNaNNaNNaN
...................................................
9999517ATLBQK1108-6.012191208.0-11.00.00.0NaNNaNNaNNaNNaN
9999617LASPHL11089.018421844.02.00.00.0NaNNaNNaNNaNNaN
9999717SFOBFL1108-7.012251232.07.00.00.0NaNNaNNaNNaNNaN
9999817ORDMCO11097.014541453.0-1.00.00.0NaNNaNNaNNaNNaN
9999917HOUDFW1109-9.012201212.0-8.00.00.0NaNNaNNaNNaNNaN
\n", + "

100000 rows × 16 columns

\n", + "
" + ], + "text/plain": [ + " MONTH DAY ... LATE_AIRCRAFT_DELAY WEATHER_DELAY\n", + "0 1 1 ... NaN NaN\n", + "1 1 1 ... NaN NaN\n", + "2 1 1 ... NaN NaN\n", + "3 1 1 ... NaN NaN\n", + "4 1 1 ... NaN NaN\n", + "... ... ... ... ... ...\n", + "99995 1 7 ... NaN NaN\n", + "99996 1 7 ... NaN NaN\n", + "99997 1 7 ... NaN NaN\n", + "99998 1 7 ... NaN NaN\n", + "99999 1 7 ... NaN NaN\n", + "\n", + "[100000 rows x 16 columns]" + ] + }, + "execution_count": 39, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "flights_needed_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "I5IBw7ad0uxw" + }, + "outputs": [], + "source": [ + "# replacing NaN values with the mean of the attribute\n", + "flights_needed_data=flights_needed_data.fillna(flights_needed_data.mean())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "IwDGKuZ04ImK", + "outputId": "7681ba8f-fb64-45bc-bf95-10aec3b82919" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MONTHDAYORIGIN_AIRPORTDESTINATION_AIRPORTSCHEDULED_DEPARTUREDEPARTURE_DELAYSCHEDULED_ARRIVALARRIVAL_TIMEARRIVAL_DELAYDIVERTEDCANCELLEDAIR_SYSTEM_DELAYSECURITY_DELAYAIRLINE_DELAYLATE_AIRCRAFT_DELAYWEATHER_DELAY
011ANCSEA5-11.0430408.0-22.00.00.014.0268010.07078717.85392126.0145562.751971
111LAXPBI10-8.0750741.0-9.00.00.014.0268010.07078717.85392126.0145562.751971
211SFOCLT20-2.0806811.05.00.00.014.0268010.07078717.85392126.0145562.751971
311LAXMIA20-5.0805756.0-9.00.00.014.0268010.07078717.85392126.0145562.751971
411SEAANC25-1.0320259.0-21.00.00.014.0268010.07078717.85392126.0145562.751971
...................................................
9999517ATLBQK1108-6.012191208.0-11.00.00.014.0268010.07078717.85392126.0145562.751971
9999617LASPHL11089.018421844.02.00.00.014.0268010.07078717.85392126.0145562.751971
9999717SFOBFL1108-7.012251232.07.00.00.014.0268010.07078717.85392126.0145562.751971
9999817ORDMCO11097.014541453.0-1.00.00.014.0268010.07078717.85392126.0145562.751971
9999917HOUDFW1109-9.012201212.0-8.00.00.014.0268010.07078717.85392126.0145562.751971
\n", + "

100000 rows × 16 columns

\n", + "
" + ], + "text/plain": [ + " MONTH DAY ... LATE_AIRCRAFT_DELAY WEATHER_DELAY\n", + "0 1 1 ... 26.014556 2.751971\n", + "1 1 1 ... 26.014556 2.751971\n", + "2 1 1 ... 26.014556 2.751971\n", + "3 1 1 ... 26.014556 2.751971\n", + "4 1 1 ... 26.014556 2.751971\n", + "... ... ... ... ... ...\n", + "99995 1 7 ... 26.014556 2.751971\n", + "99996 1 7 ... 26.014556 2.751971\n", + "99997 1 7 ... 26.014556 2.751971\n", + "99998 1 7 ... 26.014556 2.751971\n", + "99999 1 7 ... 26.014556 2.751971\n", + "\n", + "[100000 rows x 16 columns]" + ] + }, + "execution_count": 41, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "flights_needed_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BjQ1rhrb1YFd" + }, + "outputs": [], + "source": [ + "result=[]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "C2AFDcSz2bjO" + }, + "outputs": [], + "source": [ + "# if the delay in flight's arrival is more than 15 mins, then it's definitely delayed\n", + "for row in flights_needed_data['ARRIVAL_DELAY']:\n", + " if row > 15:\n", + " result.append(1)\n", + " else:\n", + " result.append(0) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Kh0J66aj3EzK" + }, + "outputs": [], + "source": [ + "flights_needed_data['result'] = result" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "uJ4QW_k33ZNu", + "outputId": "7a0e9576-26a4-4217-81b4-8792712bfe55" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MONTHDAYORIGIN_AIRPORTDESTINATION_AIRPORTSCHEDULED_DEPARTUREDEPARTURE_DELAYSCHEDULED_ARRIVALARRIVAL_TIMEARRIVAL_DELAYDIVERTEDCANCELLEDAIR_SYSTEM_DELAYSECURITY_DELAYAIRLINE_DELAYLATE_AIRCRAFT_DELAYWEATHER_DELAYresult
011ANCSEA5-11.0430408.0-22.00.00.014.0268010.07078717.85392126.0145562.7519710
111LAXPBI10-8.0750741.0-9.00.00.014.0268010.07078717.85392126.0145562.7519710
211SFOCLT20-2.0806811.05.00.00.014.0268010.07078717.85392126.0145562.7519710
311LAXMIA20-5.0805756.0-9.00.00.014.0268010.07078717.85392126.0145562.7519710
411SEAANC25-1.0320259.0-21.00.00.014.0268010.07078717.85392126.0145562.7519710
......................................................
9999517ATLBQK1108-6.012191208.0-11.00.00.014.0268010.07078717.85392126.0145562.7519710
9999617LASPHL11089.018421844.02.00.00.014.0268010.07078717.85392126.0145562.7519710
9999717SFOBFL1108-7.012251232.07.00.00.014.0268010.07078717.85392126.0145562.7519710
9999817ORDMCO11097.014541453.0-1.00.00.014.0268010.07078717.85392126.0145562.7519710
9999917HOUDFW1109-9.012201212.0-8.00.00.014.0268010.07078717.85392126.0145562.7519710
\n", + "

100000 rows × 17 columns

\n", + "
" + ], + "text/plain": [ + " MONTH DAY ORIGIN_AIRPORT ... LATE_AIRCRAFT_DELAY WEATHER_DELAY result\n", + "0 1 1 ANC ... 26.014556 2.751971 0\n", + "1 1 1 LAX ... 26.014556 2.751971 0\n", + "2 1 1 SFO ... 26.014556 2.751971 0\n", + "3 1 1 LAX ... 26.014556 2.751971 0\n", + "4 1 1 SEA ... 26.014556 2.751971 0\n", + "... ... ... ... ... ... ... ...\n", + "99995 1 7 ATL ... 26.014556 2.751971 0\n", + "99996 1 7 LAS ... 26.014556 2.751971 0\n", + "99997 1 7 SFO ... 26.014556 2.751971 0\n", + "99998 1 7 ORD ... 26.014556 2.751971 0\n", + "99999 1 7 HOU ... 26.014556 2.751971 0\n", + "\n", + "[100000 rows x 17 columns]" + ] + }, + "execution_count": 45, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "flights_needed_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "krPajIiZ3_G5", + "outputId": "91845772-d06b-404c-8bc8-fe64871403a7" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "result\n", + "0 63779\n", + "1 36221\n", + "dtype: int64" + ] + }, + "execution_count": 46, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "flights_needed_data.value_counts('result')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 422 + }, + "id": "Ij79v7Y3_RgW", + "outputId": "87325518-f689-42cc-b978-633e9169dda6" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
MONTHDAYSCHEDULED_DEPARTUREDEPARTURE_DELAYSCHEDULED_ARRIVALDIVERTEDCANCELLEDAIR_SYSTEM_DELAYSECURITY_DELAYAIRLINE_DELAYLATE_AIRCRAFT_DELAYWEATHER_DELAYresult
0115-11.04300.00.014.0268010.07078717.85392126.0145562.7519710
11110-8.07500.00.014.0268010.07078717.85392126.0145562.7519710
21120-2.08060.00.014.0268010.07078717.85392126.0145562.7519710
31120-5.08050.00.014.0268010.07078717.85392126.0145562.7519710
41125-1.03200.00.014.0268010.07078717.85392126.0145562.7519710
..........................................
99995171108-6.012190.00.014.0268010.07078717.85392126.0145562.7519710
999961711089.018420.00.014.0268010.07078717.85392126.0145562.7519710
99997171108-7.012250.00.014.0268010.07078717.85392126.0145562.7519710
999981711097.014540.00.014.0268010.07078717.85392126.0145562.7519710
99999171109-9.012200.00.014.0268010.07078717.85392126.0145562.7519710
\n", + "

100000 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " MONTH DAY ... WEATHER_DELAY result\n", + "0 1 1 ... 2.751971 0\n", + "1 1 1 ... 2.751971 0\n", + "2 1 1 ... 2.751971 0\n", + "3 1 1 ... 2.751971 0\n", + "4 1 1 ... 2.751971 0\n", + "... ... ... ... ... ...\n", + "99995 1 7 ... 2.751971 0\n", + "99996 1 7 ... 2.751971 0\n", + "99997 1 7 ... 2.751971 0\n", + "99998 1 7 ... 2.751971 0\n", + "99999 1 7 ... 2.751971 0\n", + "\n", + "[100000 rows x 13 columns]" + ] + }, + "execution_count": 47, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "flights_needed_data=flights_needed_data.drop(['ORIGIN_AIRPORT', 'DESTINATION_AIRPORT', 'ARRIVAL_TIME', 'ARRIVAL_DELAY'],axis=1)\n", + "flights_needed_data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K3FRiemNH1ml" + }, + "source": [ + "### Splitting Data for Training and Testing" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GwAUjhg-4Zn6" + }, + "outputs": [], + "source": [ + "data = flights_needed_data.values\n", + "X, y = data[:,:-1], data[:,-1]\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42) # splitting in the ratio 70:30" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mQgSjXYFudyY" + }, + "source": [ + "### Standardizing " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "6XsHnDLP7CFs" + }, + "outputs": [], + "source": [ + "scaled_features = StandardScaler().fit_transform(X_train, X_test)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FOOgER-OujcI" + }, + "source": [ + "### Applying Decision Tree Classifier on Training Data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0AIkZKNdBEWS" + }, + "outputs": [], + "source": [ + "clf = DecisionTreeClassifier()\n", + "clf = clf.fit(X_train,y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mwXLSatCusMb" + }, + "source": [ + "### Making Predictions and Checking Accuracy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "E3CWbnZOB2M0", + "outputId": "3ec45653-a3ec-4ff0-d32f-343d8845d3cd" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.9977479115791175" + ] + }, + "execution_count": 51, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "pred_prob = clf.predict_proba(X_test)\n", + "auc_score = roc_auc_score(y_test, pred_prob[:,1])\n", + "auc_score" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8-zrkG_Hwsa7" + }, + "source": [ + "###
Predictions are 99.77% accurate.
" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "Flight Delay Predictions.ipynb", + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}