-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcustomize_service.py
268 lines (253 loc) · 12.1 KB
/
customize_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# -*- coding: utf-8 -*-
from collections import OrderedDict
from hr.seg_hrnet import hrnet18
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.autograd import Variable
from model_service.pytorch_model_service import PTServingBaseService
import cv2
import time
# from metric.metrics_manager import MetricsManager
import log
from io import BytesIO
import base64
from PIL import Image
Image.MAX_IMAGE_PIXELS = 1000000000000000
logger = log.getLogger(__name__)
class ImageClassificationService(PTServingBaseService):
def __init__(self, model_name, model_path):
self.model_name = model_name
self.model_path = model_path
self.pred_windows = 1024
self.stride = 512
self.model = hrnet18(pretrained=False)
self.use_cuda = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
print('Using GPU for inference')
self.use_cuda = True
checkpoint = torch.load(self.model_path, map_location="cuda:0")
self.model = self.model.to(device)
self.model.load_state_dict(checkpoint['state_dict'])
else:
print('Using CPU for inference')
checkpoint = torch.load(self.model_path, map_location='cpu')
self.model.load_state_dict(checkpoint['state_dict'])
self.model.eval()
def ms_inference(self,model, image, flip=True):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
size = image.size()
pred = model(image)
pred = F.interpolate(
input=pred, size=size[-2:],
mode='bilinear', align_corners=True
)
pred = F.softmax(pred, dim=1)
if flip:
flip_img = image.cpu().numpy()[:, :,::-1, :]
flip_output = model(torch.from_numpy(flip_img.copy()).to(device))
flip_output = F.interpolate(
input=flip_output, size=size[-2:],
mode='bilinear', align_corners=True
)
flip_output = F.softmax(flip_output, dim=1)
flip_pred = flip_output.cpu().numpy().copy()
flip_pred = torch.from_numpy(
flip_pred[:, :, ::-1 ,: ].copy()).to(device)
pred += flip_pred
pred = pred * 0.5
return pred # .exp()
def multi_scale_aug(self,image,
rand_scale=1):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
long_size = np.int(1024 * rand_scale + 0.5)
h, w = image.shape[:2]
if h > w:
new_h = long_size
new_w = np.int(w * long_size / h + 0.5)
else:
new_w = long_size
new_h = np.int(h * long_size / w + 0.5)
image = cv2.resize(image, (new_w, new_h),
interpolation=cv2.INTER_LINEAR)
return image
def multi_scale_inference(self,model, image, scales=[0.75, 1., 1.25], flip=False):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch, _, ori_height, ori_width = image.size()
assert batch == 1, "only supporting batchsize 1."
image = image.cpu().numpy()[0].transpose((1, 2, 0)).copy() # hwc
stride_h = np.int(1024 * 1.0)
stride_w = np.int(1024 * 1.0)
final_pred = torch.zeros([1, 2,
ori_height, ori_width]).to(device)
for scale in scales:
new_img = self.multi_scale_aug(image=image, rand_scale=scale)
height, width = new_img.shape[:-1]
if scale <= 2.0:
if scale==1 or scale==0.75 or scale==1.25:
flip=True
else:
flip=False
new_img = new_img.transpose((2, 0, 1))
new_img = np.expand_dims(new_img, axis=0)
new_img = torch.from_numpy(new_img).to(device)
preds = self.ms_inference(model, new_img, flip)
preds = preds[:, :, 0:height, 0:width]
else:
new_h, new_w = new_img.shape[:-1]
rows = np.int(np.ceil(1.0 * (new_h -
1024) / stride_h)) + 1
cols = np.int(np.ceil(1.0 * (new_w -
1024) / stride_w)) + 1
preds = torch.zeros([1, 2,
new_h, new_w]).to(device)
count = torch.zeros([1, 1, new_h, new_w]).to(device)
for r in range(rows):
for c in range(cols):
h0 = r * stride_h
w0 = c * stride_w
h1 = min(h0 + 1024, new_h)
w1 = min(w0 + 1024, new_w)
h0 = max(int(h1 - 1024), 0)
w0 = max(int(w1 - 1024), 0)
crop_img = new_img[h0:h1, w0:w1, :]
crop_img = crop_img.transpose((2, 0, 1))
crop_img = np.expand_dims(crop_img, axis=0)
crop_img = torch.from_numpy(crop_img).to(device)
pred = self.ms_inference(model, crop_img, flip)
preds[:, :, h0:h1, w0:w1] += pred[:, :, 0:h1 - h0, 0:w1 - w0]
count[:, :, h0:h1, w0:w1] += 1
preds = preds / count
preds = preds[:, :, :height, :width]
preds = F.interpolate(
preds, (ori_height, ori_width),
mode='bilinear', align_corners=True
)
final_pred += preds
return final_pred/len(scales)
# read img
def _preprocess(self, data):
preprocessed_data = {}
for k, v in data.items():
for file_name, file_content in v.items():
img = Image.open(file_content)
# img = self.transforms(img)
img = np.array(img)
preprocessed_data[k] = img
return preprocessed_data
# peng zhang yu ce
def _inference(self, data):
img = data["input_img"]
data = img
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data = data.astype(np.float32)
mean = (0.355403, 0.383969, 0.359276)
std = (0.206617, 0.202157, 0.210082)
data /= 255
data -= mean
data /= std
# padding
src_h, src_w = data.shape[0], data.shape[1]
# pad_top = (self.pred_windows - self.stride) // 2
pad_bottom = 4096-src_h
# pad_left = (self.pred_windows - self.stride) // 2
# pad_right = (self.stride - src_w % self.stride) + (
# self.pred_windows - self.stride) // 2 if src_w % self.stride else (self.pred_windows - self.stride) // 2
data_pad = cv2.copyMakeBorder(data, 0, pad_bottom, 0, 0, cv2.BORDER_CONSTANT,
value=(0.0, 0.0, 0.0))
data = data_pad.transpose(2, 0, 1) # c,h,w
c, h, w = data.shape
label = np.zeros((src_h, src_w))
h_num = (h-self.pred_windows)//self.stride + 1
w_num = (w-self.pred_windows)//self.stride + 1
with torch.no_grad():
for i in range(h_num):
for j in range(w_num):
h_s, h_e = i * self.stride, i * self.stride + self.pred_windows
w_s, w_e = j * self.stride, j * self.stride + self.pred_windows
img = data[:, h_s:h_e, w_s:w_e]
img = img[np.newaxis, :, :, :].astype(np.float32)
img = torch.from_numpy(img)
img = img.to(device)
# out_l = self.model(img)
out_l = self.multi_scale_inference(self.model, img, scales=[0.5,0.75,1,1.25,1.5])
# out_l = torch.softmax(out_l, dim=1)
out_l = out_l.cpu().data.numpy()
# out_l[out_l[0,0,:,:]>=0.4] = 0
pred = np.ones([out_l.shape[2], out_l.shape[3]], dtype=np.uint8)
pred[out_l[0, 0, :, :] >= 0.3] = 0
out_l = pred
label_h_s, label_h_e = (self.pred_windows - self.stride) // 2 + i * self.stride, min(
(i + 1) * self.stride + (self.pred_windows - self.stride) // 2, src_h)
label_w_s, label_w_e = (self.pred_windows - self.stride) // 2 + j * self.stride, min(
(j + 1) * self.stride + (self.pred_windows - self.stride) // 2, src_w)
out_h_s, out_h_e = (self.pred_windows - self.stride) // 2, (self.pred_windows - self.stride) // 2 + (
label_h_e - label_h_s)
out_w_s, out_w_e = (self.pred_windows - self.stride) // 2, (self.pred_windows - self.stride) // 2 + (
label_w_e - label_w_s)
if i == 0:
label_h_s = 0
label_h_e = self.stride + (self.pred_windows - self.stride) // 2
out_h_s = 0
out_h_e = self.stride + (self.pred_windows - self.stride) // 2
if j == 0:
label_w_s = 0
label_w_e = self.stride + (self.pred_windows - self.stride) // 2
out_w_s = 0
out_w_e = self.stride + (self.pred_windows - self.stride) // 2
if i == h_num - 1:
label_h_e = src_h
out_h_e = (self.pred_windows - self.stride) // 2 + (
label_h_e - label_h_s)
if j == w_num - 1:
label_w_e = src_w
out_w_e = (self.pred_windows - self.stride) // 2 + (
label_w_e - label_w_s)
label[label_h_s:label_h_e, label_w_s:label_w_e] = out_l[out_h_s: out_h_e,
out_w_s: out_w_e].astype(
np.int8)
# _label = label.astype(np.int8).tolist()
_label = label.astype(np.int8).tolist()
_len, __len = len(_label), len(_label[0])
o_stack = []
for _ in _label:
out_s = {"s":[], "e":[]}
j = 0
while j < __len:
if _[j] == 0:
out_s["s"].append(str(j))
while j < __len and _[j] == 0: j += 1
out_s["e"].append(str(j))
j += 1
o_stack.append(out_s)
result = {"result": o_stack}
return result
def _postprocess(self, data):
return data
def inference(self, data):
pre_start_time = time.time()
data = self._preprocess(data)
infer_start_time = time.time()
# Update preprocess latency metric
pre_time_in_ms = (infer_start_time - pre_start_time) * 1000
logger.info('preprocess time: ' + str(pre_time_in_ms) + 'ms')
# if self.model_name + '_LatencyPreprocess' in MetricsManager.metrics:
# MetricsManager.metrics[self.model_name + '_LatencyPreprocess'].update(pre_time_in_ms)
data = self._inference(data)
infer_end_time = time.time()
infer_in_ms = (infer_end_time - infer_start_time) * 1000
logger.info('infer time: ' + str(infer_in_ms) + 'ms')
data = self._postprocess(data)
# Update inference latency metric
post_time_in_ms = (time.time() - infer_end_time) * 1000
logger.info('postprocess time: ' + str(post_time_in_ms) + 'ms')
# if self.model_name + '_LatencyInference' in MetricsManager.metrics:
# MetricsManager.metrics[self.model_name + '_LatencyInference'].update(post_time_in_ms)
# Update overall latency metric
# if self.model_name + '_LatencyOverall' in MetricsManager.metrics:
# MetricsManager.metrics[self.model_name + '_LatencyOverall'].update(pre_time_in_ms + post_time_in_ms)
logger.info('latency: ' + str(pre_time_in_ms + infer_in_ms + post_time_in_ms) + 'ms')
data['latency_time'] = pre_time_in_ms + infer_in_ms + post_time_in_ms
return data