forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
184 lines (161 loc) · 6.43 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Data utils for CIFAR-10 and CIFAR-100."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import cPickle
import os
import augmentation_transforms
import numpy as np
import policies as found_policies
import tensorflow as tf
# pylint:disable=logging-format-interpolation
class DataSet(object):
"""Dataset object that produces augmented training and eval data."""
def __init__(self, hparams):
self.hparams = hparams
self.epochs = 0
self.curr_train_index = 0
all_labels = []
self.good_policies = found_policies.good_policies()
# Determine how many databatched to load
num_data_batches_to_load = 5
total_batches_to_load = num_data_batches_to_load
train_batches_to_load = total_batches_to_load
assert hparams.train_size + hparams.validation_size <= 50000
if hparams.eval_test:
total_batches_to_load += 1
# Determine how many images we have loaded
total_dataset_size = 10000 * num_data_batches_to_load
train_dataset_size = total_dataset_size
if hparams.eval_test:
total_dataset_size += 10000
if hparams.dataset == 'cifar10':
all_data = np.empty((total_batches_to_load, 10000, 3072), dtype=np.uint8)
elif hparams.dataset == 'cifar100':
assert num_data_batches_to_load == 5
all_data = np.empty((1, 50000, 3072), dtype=np.uint8)
if hparams.eval_test:
test_data = np.empty((1, 10000, 3072), dtype=np.uint8)
if hparams.dataset == 'cifar10':
tf.logging.info('Cifar10')
datafiles = [
'data_batch_1', 'data_batch_2', 'data_batch_3', 'data_batch_4',
'data_batch_5']
datafiles = datafiles[:train_batches_to_load]
if hparams.eval_test:
datafiles.append('test_batch')
num_classes = 10
elif hparams.dataset == 'cifar100':
datafiles = ['train']
if hparams.eval_test:
datafiles.append('test')
num_classes = 100
else:
raise NotImplementedError('Unimplemented dataset: ', hparams.dataset)
if hparams.dataset != 'test':
for file_num, f in enumerate(datafiles):
d = unpickle(os.path.join(hparams.data_path, f))
if f == 'test':
test_data[0] = copy.deepcopy(d['data'])
all_data = np.concatenate([all_data, test_data], axis=1)
else:
all_data[file_num] = copy.deepcopy(d['data'])
if hparams.dataset == 'cifar10':
labels = np.array(d['labels'])
else:
labels = np.array(d['fine_labels'])
nsamples = len(labels)
for idx in range(nsamples):
all_labels.append(labels[idx])
all_data = all_data.reshape(total_dataset_size, 3072)
all_data = all_data.reshape(-1, 3, 32, 32)
all_data = all_data.transpose(0, 2, 3, 1).copy()
all_data = all_data / 255.0
mean = augmentation_transforms.MEANS
std = augmentation_transforms.STDS
tf.logging.info('mean:{} std: {}'.format(mean, std))
all_data = (all_data - mean) / std
all_labels = np.eye(num_classes)[np.array(all_labels, dtype=np.int32)]
assert len(all_data) == len(all_labels)
tf.logging.info(
'In CIFAR10 loader, number of images: {}'.format(len(all_data)))
# Break off test data
if hparams.eval_test:
self.test_images = all_data[train_dataset_size:]
self.test_labels = all_labels[train_dataset_size:]
# Shuffle the rest of the data
all_data = all_data[:train_dataset_size]
all_labels = all_labels[:train_dataset_size]
np.random.seed(0)
perm = np.arange(len(all_data))
np.random.shuffle(perm)
all_data = all_data[perm]
all_labels = all_labels[perm]
# Break into train and val
train_size, val_size = hparams.train_size, hparams.validation_size
assert 50000 >= train_size + val_size
self.train_images = all_data[:train_size]
self.train_labels = all_labels[:train_size]
self.val_images = all_data[train_size:train_size + val_size]
self.val_labels = all_labels[train_size:train_size + val_size]
self.num_train = self.train_images.shape[0]
def next_batch(self):
"""Return the next minibatch of augmented data."""
next_train_index = self.curr_train_index + self.hparams.batch_size
if next_train_index > self.num_train:
# Increase epoch number
epoch = self.epochs + 1
self.reset()
self.epochs = epoch
batched_data = (
self.train_images[self.curr_train_index:
self.curr_train_index + self.hparams.batch_size],
self.train_labels[self.curr_train_index:
self.curr_train_index + self.hparams.batch_size])
final_imgs = []
images, labels = batched_data
for data in images:
epoch_policy = self.good_policies[np.random.choice(
len(self.good_policies))]
final_img = augmentation_transforms.apply_policy(
epoch_policy, data)
final_img = augmentation_transforms.random_flip(
augmentation_transforms.zero_pad_and_crop(final_img, 4))
# Apply cutout
final_img = augmentation_transforms.cutout_numpy(final_img)
final_imgs.append(final_img)
batched_data = (np.array(final_imgs, np.float32), labels)
self.curr_train_index += self.hparams.batch_size
return batched_data
def reset(self):
"""Reset training data and index into the training data."""
self.epochs = 0
# Shuffle the training data
perm = np.arange(self.num_train)
np.random.shuffle(perm)
assert self.num_train == self.train_images.shape[
0], 'Error incorrect shuffling mask'
self.train_images = self.train_images[perm]
self.train_labels = self.train_labels[perm]
self.curr_train_index = 0
def unpickle(f):
tf.logging.info('loading file: {}'.format(f))
fo = tf.gfile.Open(f, 'r')
d = cPickle.load(fo)
fo.close()
return d