-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
321 lines (268 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import torch
import load
import time
import torch.nn.functional as F
import numpy
import random
import logging
import torch.optim as optim
from ssl_lib.consistency.builder import gen_consistency
from ssl_lib.algs.builder import gen_ssl_alg
from ssl_lib.models.builder import gen_model
from ssl_lib.misc.meter import Meter
from ssl_lib.param_scheduler import scheduler
from ssl_lib.models import utils as model_utils
def evaluation(raw_model, eval_model, loader, device):
raw_model.eval()
eval_model.eval()
sum_raw_acc = sum_acc = sum_loss = 0
with torch.no_grad():
for (data, labels) in loader:
data, labels = data.to(device), labels.to(device)
#forward pass
preds = eval_model(data)
raw_preds = raw_model(data)
#softmax comes with cross entropy loss for numerical stability in the pytorch
loss = F.cross_entropy(preds, labels)
sum_loss += loss.item()
#get max predicton over axis one which means we take the max over the columns, returns maximum value in each row:
#the outout of max is the index of the maximum prediction (second element)
# and the prediction value the (first element), output : ( max value of presiction, index)
# we need the index which coresponds to the class
acc = (preds.max(1)[1] == labels).float().mean()
raw_acc = (raw_preds.max(1)[1] == labels).float().mean()
#updatae count
sum_acc += acc.item()
sum_raw_acc += raw_acc.item()
mean_raw_acc = sum_raw_acc / len(loader)
mean_acc = sum_acc / len(loader)
mean_loss = sum_loss / len(loader)
raw_model.train()
eval_model.train()
return mean_raw_acc, mean_acc, mean_loss
'''
:param:labeled: is the labele of labeled data not psudolabels
avarage_model: will be the same as eval model if we do not use exponential moving average for evaluaton
'''
def param_update(
cfg,
cur_iteration,
model,
teacher_model,
optimizer,
ssl_alg,
consistency,
labeled_data,
ul_weak_data,
ul_strong_data,
labels,
average_model
):
#measure the time of one iteration
start_time = time.time()
#concatenate all labeled data and unlabeled data
all_data = torch.cat([labeled_data, ul_weak_data], 0)
forward_func = model.forward
stu_logits = forward_func(all_data)
# get prediction for labeled data
labeled_preds = stu_logits[:labeled_data.shape[0]]
#get prediction for unlabled data
stu_unlabeled_weak_logits = stu_logits[labels.shape[0]:]
L_supervised = F.cross_entropy(labeled_preds, labels)
if cfg.coef > 0:
# calc consistency loss
model.update_batch_stats(False)
# ssl_alg return ConsistencyRegularization and ConsistencyRegularization reurns stu_preds, adjusted targets, mask for psuldo labeling
y, targets, mask = ssl_alg(
stu_preds= stu_unlabeled_weak_logits,
#if there is no teacher the tea_logit is the model(student) logits
tea_logits=stu_unlabeled_weak_logits.detach(),
#in the original code the ul_strong_data can be the same as ul_weak_data
#data=ul_strong_data,
data = ul_weak_data,
stu_forward=stu_logits,
#if there is no teacher model, the t_forward_func is the same as forward_func
tea_forward=stu_logits
)
model.update_batch_stats(True)
#returns the loss from for example CrossEntropy class which returns
#consistency is consistency type
L_consistency = consistency(y, targets, mask, weak_prediction=stu_unlabeled_weak_logits.softmax(1))
#supervised learning
else:
L_consistency = torch.zeros_like(L_supervised)
mask = None
#schaduler for coef of unsupervised loss
coef = scheduler.linear_warmup(cfg.coef, cfg.warmup_iter, cur_iteration + 1)
# calc total loss
loss = L_supervised + coef * L_consistency
if cfg.entropy_minimization > 0:
loss -= cfg.entropy_minimization * \
(stu_unlabeled_weak_logits.softmax(1) * F.log_softmax(stu_unlabeled_weak_logits, 1)).sum(1).mean()
# update parameters
#get access to current learning rate
cur_lr = optimizer.param_groups[0]["lr"]
#zero the parameter gradients
optimizer.zero_grad()
#take the deravitives(gradients) and backward
loss.backward()
#if we have weight regularization in the loss
#weight decay factor 0.2 after 400,000 iterations
if cfg.weight_decay > 0:
decay_coeff = cfg.weight_decay * cur_lr
model_utils.apply_weight_decay(model.modules(), decay_coeff)
#update the parameters
optimizer.step()
# update evaluation model's parameters by exponential moving average
if cfg.weight_average:
model_utils.ema_update(
average_model, model, cfg.wa_ema_factor,
cfg.weight_decay * cur_lr if cfg.wa_apply_wd else None)
# calculate accuracy for labeled data
acc = (labeled_preds.max(1)[1] == labels).float().mean()
return {
"acc": acc,
"loss": loss.item(),
"sup loss": L_supervised.item(),
"ssl loss": L_consistency.item(),
"mask": mask.float().mean().item() if mask is not None else 1,
"coef": coef,
"sec/iter": (time.time() - start_time)
}
def main(cfg, logger):
# set seed
torch.manual_seed(cfg.seed)
numpy.random.seed(cfg.seed)
random.seed(cfg.seed)
torch.cuda.manual_seed(cfg.seed)
torch.cuda.manual_seed_all(cfg.seed)
torch.backends.cudnn.deterministic = True
#all the model parameters and the input data should be on the same gpu or RAM
# select device
if torch.cuda.is_available():
device = "cuda"
torch.backends.cudnn.benckmark = True
print("running on GPU!")
else:
logger.info("CUDA is NOT available")
device = "cpu"
print("running on CPU")
# build data loader
logger.info("load dataset")
data_loaders = load.get_dataloaders(root= cfg.root, data=cfg.dataset, n_labels=cfg.n_labels, n_unlabels=cfg.n_unlabels, n_valid=cfg.n_valid,
l_batch_size=cfg.l_batch_size, ul_batch_size=cfg.ul_batch_size,
test_batch_size=cfg.test_batch_size, iterations=cfg.iteration,
n_class=cfg.n_class, ratio=cfg.ratio, unlabeled_aug=cfg.unlabeled_aug, cfg=cfg)
label_loader = data_loaders['labeled']
unlabel_loader = data_loaders['unlabeled']
test_loader = data_loaders['test']
val_loader = data_loaders['valid']
num_classes = cfg.n_class
img_size = cfg.img_size
print("data is loaded!")
# set consistency type: consistency type (cross entropy, mean squre)
consistency = gen_consistency(cfg.consis, cfg)
# set ssl algorithm
ssl_alg = gen_ssl_alg(cfg.alg, cfg)
# build student model
model = gen_model(cfg.arch, num_classes, img_size).to(device)
# build teacher model
if cfg.ema_teacher:
teacher_model = gen_model(cfg.arch, num_classes, img_size).to(device)
teacher_model.load_state_dict(model.state_dict())
else:
teacher_model = None
# for evaluation
if cfg.weight_average:
average_model = gen_model(cfg.arch, num_classes, img_size).to(device)
average_model.load_state_dict(model.state_dict())
else:
average_model = None
# sets the model in training mode (it does not train the model)
model.train()
logger.info(model)
# build optimizer
if cfg.optimizer == "sgd":
optimizer = optim.SGD(
model.parameters(), cfg.lr, cfg.momentum, weight_decay=0, nesterov=True
)
elif cfg.optimizer == "adam":
optimizer = optim.AdamW(
model.parameters(), cfg.lr, (cfg.momentum, 0.999), weight_decay=0
)
else:
raise NotImplementedError
# set lr scheduler
if cfg.lr_decay == "cos":
lr_scheduler = scheduler.CosineAnnealingLR(optimizer, cfg.iteration)
elif cfg.lr_decay == "step":
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [400000, ], cfg.lr_decay_rate)
else:
raise NotImplementedError
# init meter
metric_meter = Meter()
maximum_val_acc = 0
logger.info("training")
for i,(l_data, ul_data) in enumerate(zip(label_loader, unlabel_loader)):
l_aug, labels = l_data
ul_w_aug, ul_s_aug, _ = ul_data
params = param_update(
cfg, i, model, teacher_model, optimizer, ssl_alg,
consistency, l_aug.to(device), ul_w_aug.to(device),
ul_s_aug.to(device), labels.to(device),
average_model
)
# moving average for reporting losses and accuracy
metric_meter.add(params, ignores=["coef"])
# display losses every cfg.disp iterations
if ((i+1) % cfg.disp) == 0:
state = metric_meter.state(
header = f'[{i+1}/{cfg.iteration}]',
footer = f'ssl coef {params["coef"]:.4g} | lr {optimizer.param_groups[0]["lr"]:.4g}'
)
logger.info(state)
lr_scheduler.step()
# validation
if ((i + 1) % cfg.checkpoint) == 0 or (i + 1) == cfg.iteration:
with torch.no_grad():
if cfg.weight_average:
eval_model = average_model
else:
eval_model = model
logger.info("validation")
mean_raw_acc, mean_val_acc, mean_val_loss = evaluation(model, eval_model, val_loader, device)
logger.info("validation loss %f | validation acc. %f | raw acc. %f", mean_val_loss, mean_val_acc,
mean_raw_acc)
# test
if not cfg.only_validation and mean_val_acc > maximum_val_acc:
torch.save(eval_model.state_dict(), os.path.join(cfg.out_dir, "best_model.pth"))
maximum_val_acc = mean_val_acc
logger.info("test")
mean_raw_acc, mean_test_acc, mean_test_loss = evaluation(model, eval_model, test_loader, device)
logger.info("test loss %f | test acc. %f | raw acc. %f", mean_test_loss, mean_test_acc,
mean_raw_acc)
logger.info("test accuracy %f", mean_test_acc)
torch.save(model.state_dict(), os.path.join(cfg.out_dir, "model_checkpoint.pth"))
torch.save(optimizer.state_dict(), os.path.join(cfg.out_dir, "optimizer_checkpoint.pth"))
if __name__ == "__main__":
import os, sys
from parser import get_args
args = get_args()
os.makedirs(args.out_dir, exist_ok=True)
# setup logger
plain_formatter = logging.Formatter(
"[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%m/%d %H:%M:%S"
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
s_handler = logging.StreamHandler(stream=sys.stdout)
s_handler.setFormatter(plain_formatter)
s_handler.setLevel(logging.DEBUG)
logger.addHandler(s_handler)
f_handler = logging.FileHandler(os.path.join(args.out_dir, "console.log"))
f_handler.setFormatter(plain_formatter)
f_handler.setLevel(logging.DEBUG)
logger.addHandler(f_handler)
logger.propagate = False
logger.info(args)
main(args, logger)