-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtester.py
281 lines (253 loc) · 9.34 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import json
import argparse
import torch
import logging
import copy
import utils
import data_utils
import model_utils
import meta_utils
import statistics as stat
import learn2learn as l2l
from collections import defaultdict
from torch import optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from transformers.optimization import AdamW
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def zero_shot_evaluate(test_set, label_map, bert_model, clf_head, config, args):
loader = DataLoader(
test_set,
batch_size=config.batch_size,
shuffle=False,
collate_fn=utils.collate_fn,
)
bert_model.eval().to(DEVICE)
clf_head.eval().to(DEVICE)
if label_map is not None:
loss, metrics = utils.compute_loss_metrics(
loader, bert_model, clf_head, label_map, grad_required=False
)
else:
loss, metrics = utils.qa_evaluate(
args.test_lang,
test_set,
config.model_type,
loader,
bert_model,
clf_head,
args.model_path,
)
metrics.update({"loss": loss.mean().item()})
return metrics
def evaluate(test_set, label_map, bert_model, clf_head, config, args, shots):
task = data_utils.CustomLangTaskDataset([test_set])
num_episodes = 100 # config.num_episodes
task_bs = config.task_batch_size
inner_loop_steps = config.inner_loop_steps
task_support_error = 0.0
tqdm_bar = tqdm(range(num_episodes))
all_metrics = defaultdict(list)
for _ in tqdm_bar:
learner = copy.deepcopy(clf_head).to(DEVICE).train()
encoder = copy.deepcopy(bert_model).to(DEVICE)
if not config.finetune_enc:
encoder.eval()
for param in encoder.parameters():
param.requires_grad = False
extra = []
else:
extra = list(encoder.named_parameters())
encoder.train()
if config.train_type == "mtl" or not config.use_train_lr:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in list(learner.named_parameters()) + extra
if not any(nd in n for nd in no_decay)
],
"weight_decay": config.weight_decay,
},
{
"params": [
p
for n, p in list(learner.named_parameters()) + extra
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = AdamW(
optimizer_grouped_parameters, eps=1e-8, lr=config.inner_lr
)
support_task, query_task = task.test_sample(k=shots)
for _ in range(inner_loop_steps):
support_loader = DataLoader(
data_utils.InnerDataset(support_task),
batch_size=task_bs,
shuffle=True,
num_workers=0,
)
support_error, _ = utils.compute_loss_metrics(
support_loader,
encoder,
learner,
label_map,
return_metrics=False,
enc_grad_required=config.finetune_enc,
)
support_error = support_error.mean()
if config.train_type == "mtl" or not config.use_train_lr:
support_error.backward()
optimizer.step()
optimizer.zero_grad()
else:
learner.adapt(support_error, retain_graph=config.finetune_enc)
if config.finetune_enc:
encoder.adapt(support_error, allow_unused=True)
task_support_error += support_error.item()
encoder = encoder.eval()
learner = learner.eval()
query_loader = DataLoader(
data_utils.InnerDataset(query_task),
batch_size=task_bs,
shuffle=False,
num_workers=0,
)
if label_map is not None:
query_error, metrics = utils.compute_loss_metrics(
query_loader, encoder, learner, label_map, grad_required=False
)
all_metrics["p"].append(metrics["precision"])
all_metrics["r"].append(metrics["recall"])
all_metrics["f"].append(metrics["f1"])
else:
query_error, metrics = utils.qa_evaluate(
args.test_lang,
test_set,
config.model_type,
query_loader,
encoder,
learner,
args.model_path,
)
all_metrics["exact"].append(metrics["exact"])
all_metrics["f1"].append(metrics["f1"])
tqdm_bar.set_description("Query Loss: {:.3f}".format(query_error.mean().item()))
if label_map is not None:
all_metrics["p_stdev"] = stat.stdev(all_metrics["p"])
all_metrics["p"] = stat.mean(all_metrics["p"])
all_metrics["r_stdev"] = stat.stdev(all_metrics["r"])
all_metrics["r"] = stat.mean(all_metrics["r"])
all_metrics["f_stdev"] = stat.stdev(all_metrics["f"])
all_metrics["f"] = stat.mean(all_metrics["f"])
else:
all_metrics["exact_stdev"] = stat.stdev(all_metrics["exact"])
all_metrics["exact"] = stat.mean(all_metrics["exact"])
all_metrics["f1_stdev"] = stat.stdev(all_metrics["f1"])
all_metrics["f1"] = stat.mean(all_metrics["f1"])
return all_metrics
def init_args():
parser = argparse.ArgumentParser(
description="Test POS tagging on various UD datasets"
)
parser.add_argument(
"--test_lang",
dest="test_lang",
type=str,
help="Language to test on",
required=True,
)
parser.add_argument(
"--model_path",
dest="model_path",
type=str,
help="Path of the model to load",
required=True,
)
parser.add_argument("--inner_lr", type=float, help="New learning rate", default=0.0)
parser.add_argument(
"--use_train_lr", action="store_true", help="Use meta-learned learning rates"
)
return parser.parse_args()
def main():
args = init_args()
config_path = os.path.join(args.model_path, "config.json")
load_encoder_path = os.path.join(args.model_path, "best_encoder.th")
load_head_path = os.path.join(args.model_path, "best_model.th")
logging.info("Loading config from path: {}".format(config_path))
if os.path.isfile(load_encoder_path):
logging.info("Loading encoder from path: {}".format(load_encoder_path))
logging.info("Loading model from path: {}".format(load_head_path))
config = model_utils.Config(config_path)
if args.inner_lr:
config.inner_lr = args.inner_lr
config.use_train_lr = args.use_train_lr
torch.manual_seed(config.seed)
data_dir = config.data_dir
test_path = os.path.join(data_dir, f"{args.test_lang}.test")
if "/pos/" in data_dir:
data_class = data_utils.POS
label_map = {idx: l for idx, l in enumerate(data_utils.get_pos_labels())}
elif "/tydiqa" in data_dir or "squad" in data_dir:
data_class = data_utils.QA
label_map = None
config.max_clen = 512
else:
raise ValueError(
f"Unknown task or incorrect `config.data_dir`: {config.data_dir}"
)
bert_model = model_utils.BERT(config)
if label_map is not None:
test_set = data_class(test_path, config.max_seq_length, config.model_type)
clf_head = model_utils.SeqClfHead(
len(label_map), config.hidden_dropout_prob, bert_model.get_hidden_size()
)
else:
test_set = data_class(
test_path,
config.max_clen,
config.max_qlen,
config.doc_stride,
config.model_type,
)
clf_head = model_utils.ClfHead(
config.hidden_dropout_prob, bert_model.get_hidden_size()
)
if config.train_type != "mtl":
bert_model = meta_utils.ParamMetaSGD(
bert_model, lr=config.inner_lr, first_order=config.is_fomaml
)
clf_head = meta_utils.ParamMetaSGD(
clf_head, lr=config.inner_lr, first_order=config.is_fomaml
)
if os.path.isfile(load_encoder_path):
bert_model.load_state_dict(torch.load(load_encoder_path))
clf_head.load_state_dict(torch.load(load_head_path))
# shots = args.shots
shots = [0, 5, 10, 20]
summary_metrics = {}
for shot in shots:
if shot == 0:
summary_metrics["0"] = zero_shot_evaluate(
test_set, label_map, bert_model, clf_head, config, args
)
else:
summary_metrics[str(shot)] = evaluate(
test_set, label_map, bert_model, clf_head, config, args, shot
)
save_dir = os.path.join(args.model_path, "result")
os.makedirs(save_dir, exist_ok=True)
with open(os.path.join(save_dir, "{}.json".format(args.test_lang)), "w") as f:
f.write(json.dumps(summary_metrics, indent=2))
if __name__ == "__main__":
main()