-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPython_Code__For_Decision_Trees
176 lines (120 loc) · 5.11 KB
/
Python_Code__For_Decision_Trees
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import pandas as pd
import numpy as np
import sklearn as sk
from sklearn import tree
import matplotlib.pyplot as plt
# Load the train and test datasets to create two DataFrames
train_url = "http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/train.csv"
train = pd.read_csv(train_url)
test_url = "http://s3.amazonaws.com/assets.datacamp.com/course/Kaggle/test.csv"
test = pd.read_csv(test_url)
#### converting variables and clean the data
train.loc[train["Sex"] == "male", "Sex"] = 0
train.loc[train["Sex"] == "female", "Sex"] = 1
train["Embarked"] = train["Embarked"].fillna("S")
train.loc[train["Embarked"] == "S", "Embarked"] = 0
train.loc[train["Embarked"] == "C", "Embarked"] = 1
train.loc[train["Embarked"] == "Q", "Embarked"] = 2
train["Age"] = train["Age"].fillna(train["Age"].median())
## building the first tree
target = np.array(train.Survived).transpose()
features_one = np.array([train.Pclass, train.Sex, train.Age, train.Fare]).transpose()
my_tree_one = tree.DecisionTreeClassifier()
my_tree_one = my_tree_one.fit(features_one, target)
#### second tree
features_two = np.array([train.Pclass,train.Age,train.Sex, train.Fare, train.SibSp, train.Parch,train.Embarked]).transpose()
my_tree_two = tree.DecisionTreeClassifier()
my_tree_two = my_tree_two.fit(features_two, target)
#### third tree
# control overfitting
my_tree_three = tree.DecisionTreeClassifier(max_depth = 10, min_samples_split = 5)
my_tree_three = my_tree_three.fit(features_two, target)
### evaluating the models
from sklearn.metrics import confusion_matrix
pred_vec_three = my_tree_three.predict(features_two)
pred_vec_two = my_tree_two.predict(features_two)
pred_vec_one = my_tree_one.predict(features_one)
def pred_eval(pred_vec,target):
cm = confusion_matrix(pred_vec,target)
true_positive = cm[0][0]
true_negative = cm[1][1]
false_positive = cm[0][1]
false_negative = cm[1][0]
positive = true_positive + false_negative
negative = true_negative + false_positive
sensitivity = true_positive/positive #proportion of survivals correctly classified (want to maximize)
specificity = true_negative/negative #proportion of deaths correctly classified (want to maximize)
ppv = true_positive/(true_positive + false_positive)
npv = true_negative/(true_negative + false_negative)
fnr = false_negative/positive #accordingly minimize 1 - sensitivity
fpr = false_positive/negative #accordingly minimize 1 - specificity
eval = np.array([cm,sensitivity,specificity,ppv,npv,fnr,fpr])
return(eval)
my_tree_one.score(features_one, target)
my_tree_two.score(features_two, target)
my_tree_three.score(features_two, target)
#### Graphiong the Tree
#from sklearn.externals.six import StringIO
#import pydot
#dot_data = StringIO()
#tree.export_graphviz(my_tree_one, out_file = dot_data)
#graph = pydot.graph_from_dot_data(dot_data.getvalue())
#graph.write_pdf("tree.pdf")
#from sklearn.externals.six import StringIO
#with open("tree.dot", 'w') as f:
# f = tree.export_graphviz(my_tree_two, out_file=f)
#from IPython.display import Image
#dot_data = StringIO()
#tree.export_graphviz(my_tree_two, out_file=dot_data, filled=True, rounded=True, special_characters=True)
#graph = pydot.graph_from_dot_data(dot_data.getvalue())
#### Useful Attributes
my_tree_one.feature_importances_
my_tree_one.tree_
my_tree_one.n_classes_
my_tree_one.n_features_
my_tree_one.classes_
#### Clean the test data.
test.loc[test["Sex"] == "male", "Sex"] = 0
test.loc[test["Sex"] == "female", "Sex"] = 1
test["Embarked"] = test["Embarked"].fillna("S")
test.loc[test["Embarked"] == "S", "Embarked"] = 0
test.loc[test["Embarked"] == "C", "Embarked"] = 1
test.loc[test["Embarked"] == "Q", "Embarked"] = 2
test["Age"] = test["Age"].fillna(test["Age"].median())
test.Fare[152] = test.Fare.median()
#### Prediction
test_features_one = np.array([test.Pclass, test.Fare, test.SibSp, test.Parch]).transpose()
pred_one = my_tree_one.predict(test_features_one)
test_features_two = np.array([test.Pclass,test.Age,test.Sex, test.Fare, test.SibSp, test.Parch,test.Embarked]).transpose()
pred_two = my_tree_two.predict(test_features_two)
pred_three = my_tree_three.predict(test_features_two)
#### Feature Engineering
#### https://plot.ly/matplotlib/bar-charts/
y1 = cm1[1:5]
y2 = cm2[1:5]
y3 = cm3[1:5]
N = len(y1)
x = range(N)
plt.bar(x, y2, color="red")
plt.bar(x, y3, color="green")
plt.bar(x, y1, color="blue")
g1 = cm1[5:7]
g2 = cm2[5:7]
g3 = cm3[5:7]
M = len(g1)
h = range(M)
plt.bar(h, g1, color="blue")
plt.bar(h, g3, color="green")
plt.bar(h, g2, color="red")
#### Building a Random Forest
from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier
features_forest = np.array([train.Pclass,train.Age,train.Sex, train.Fare, train.SibSp, train.Parch,train.Embarked]).transpose()
forest = RandomForestClassifier(max_depth = 10, n_estimators=100, min_samples_split=2)
my_forest = forest.fit(features_forest, target)
my_forest.score(features_forest, target)
#Evaluate the forest
pred_vec_forest = my_forest.predict(features_forest)
pred_eval(pred_vec_forest,target)
#predict using the forest
pred_forest = my_forest.predict(test_features_two)