Skip to content

Latest commit

 

History

History
135 lines (109 loc) · 5.22 KB

adding_a_model.md

File metadata and controls

135 lines (109 loc) · 5.22 KB

Adding a Model to the MTEB Leaderboard

The MTEB Leaderboard is available here. To submit to it:

  1. Add meta information about your model to model dir. See the docstring of ModelMeta for meta data details.
    from mteb.model_meta import ModelMeta
     
    bge_m3 = ModelMeta(
        name="model_name",
        languages=["model_languages"], # in format eng-Latn
        open_weights=True,
        revision="5617a9f61b028005a4858fdac845db406aefb181",
        release_date="2024-06-28",
        n_parameters=568_000_000,
        memory_usage_mb=2167,
        embed_dim=4096,
        license="mit",
        max_tokens=8194,
        reference="https://huggingface.co/BAAI/bge-m3",
        similarity_fn_name="cosine",
        framework=["Sentence Transformers", "PyTorch"],
        use_instructions=False,
        public_training_code=None,
        public_training_data="https://huggingface.co/datasets/cfli/bge-full-data",
        training_datasets={"your_dataset": ["train"]},
    )
    To calculate memory_usage_mb you can run model_meta.memory_usage_mb(). By default, the model will run using the sentence_transformers_loader loader function. If you need to use a custom implementation, you can specify the loader parameter in the ModelMeta class. For example:
    from mteb.models.wrapper import Wrapper
    from mteb.encoder_interface import PromptType
    import numpy as np
    
    class CustomWrapper(Wrapper):
        def __init__(self, model_name, model_revision):
            super().__init__(model_name, model_revision)
            # your custom implementation here
        
        def encode(
             self,
             sentences: list[str],
             *,
             task_name: str,
             prompt_type: PromptType | None = None,
             **kwargs
        ) -> np.ndarray:
            # your custom implementation here
            return np.zeros((len(sentences), self.embed_dim))
    Then you can specify the loader parameter in the ModelMeta class:
    your_model = ModelMeta(
        loader=partial(
             CustomWrapper, 
             model_name="model_name",
             model_revision="5617a9f61b028005a4858fdac845db406aefb181"
        ),
        ...
    )
  2. Run the desired model on MTEB:

Either use the Python API:

import mteb

# load a model from the hub (or for a custom implementation see https://github.com/embeddings-benchmark/mteb/blob/main/docs/reproducible_workflow.md)
model = mteb.get_model("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")

tasks = mteb.get_tasks(...) # get specific tasks
# or 
tasks = mteb.get_benchmark("MTEB(eng, classic)") # or use a specific benchmark

evaluation = mteb.MTEB(tasks=tasks)
evaluation.run(model, output_folder="results")

Or using the command line interface:

mteb run -m {model_name} -t {task_names}

These will save the results in a folder called results/{model_name}/{model_revision}.

  1. Push Results to the Leaderboard

To add results to the public leaderboard you can push your results to the results repository via a PR. Once merged they will appear on the leaderboard after a day.

  1. Wait for a refresh the leaderboard

Notes:

Using Prompts with Sentence Transformers

If your model uses Sentence Transformers and requires different prompts for encoding the queries and corpus, you can take advantage of the prompts parameter.

Internally, mteb uses query for encoding the queries and passage as the prompt names for encoding the corpus. This is aligned with the default names used by Sentence Transformers.

Adding the prompts in the model configuration (Preferred)

You can directly add the prompts when saving and uploading your model to the Hub. For an example, refer to this configuration file. These prompts can then be specified in the ModelMeta object.

model = ModelMeta(
    loader=partial(  # type: ignore
        sentence_transformers_loader,
        model_name="intfloat/multilingual-e5-small",
        revision="fd1525a9fd15316a2d503bf26ab031a61d056e98",
        model_prompts={
           "query": "query: ",
           "passage": "passage: ",
        },
    ),
)

If you are unable to directly add the prompts in the model configuration, you can instantiate the model using the sentence_transformers_loader and pass prompts as an argument. For more details, see the mteb/models/bge_models.py file.

Adding instruction models

Models that use instructions can use the InstructSentenceTransformerWrapper. For example:

model = ModelMeta(
    loader=partial(
        InstructSentenceTransformerWrapper,
        model="nvidia/NV-Embed-v1",
        revision="7604d305b621f14095a1aa23d351674c2859553a",
        instruction_template="Instruct: {instruction}\nQuery: ",
    ),
   ...
)