Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GSpline formal definition #4

Open
rafaelrojasmiliani opened this issue Aug 29, 2022 · 1 comment
Open

GSpline formal definition #4

rafaelrojasmiliani opened this issue Aug 29, 2022 · 1 comment

Comments

@rafaelrojasmiliani
Copy link
Owner

rafaelrojasmiliani commented Aug 29, 2022

Let $(M, \mathcal{O}, \mathcal{A})$ be a smooth manifold, where $M$ is a set, $\mathcal{O}$ is a topology on $M$ and $\mathcal{A}$ is a smooth atlas.

Consider the interval $I=[a,b)$ and let $I_i=[t_i, t_{i+1}), i=1,.., N$ be a partition of $I$ with $t_0=a$ and $t_{N+1} =b$. We define the GSpline $\gamma: I \longrightarrow M$ with respect to the charts $(\psi_i, U_i)$ at the interval $I_i$ as the map
$$\gamma(t) = \psi_j^{-1}\Bigg(\sum \mathbf{y} B_i \circ s_j (t)\Bigg) \ \text{ if } t\in I_j$$

We define at each interval $I_i$ the coordinates of the GSplines as
$$q_i(t) = \sum \mathbf{y} B_i \circ s_j (t) \ \text{ if } t\in I_j$$
In other words, a GSpline with respect to the charts $(\psi_i, U_i)$ at the interval $I_i$ is a curve on $ I \longrightarrow M$ such that at the interval it is given at the interval $I_i$ by a GSpline in the codomain of the chart $\psi_i$.

Continuity condition

  • $C^0$ continuity Unlike GSplines in $\mathbb{R}^n$ here the condition is not linear.
    $$\gamma(t_{i+1}^-) = \gamma(t_{i+1}^+)$$
    $$\psi_{i}^{-1}(q_i(t_{i_+1})) =\psi_{i+1}^{-1}(q_{i+1}(t_{i_+1})) $$
    $$q_i(t_{i_+1}) =\psi_i\Big(\psi_{i+1}^{-1}(q_{i+1}(t_{i_+1}))\Big) $$
    $$\psi_{i+1}\Big(\psi_{i}^{-1}(q_i(t_{i_+1}))\Big) =q_{i+1}(t_{i_+1}) $$

  • $C^1$ continuity Here we use the concept of tangen vector to the curve which is chart-independent.
    $$\dot\gamma(t_{i+1}^-) = \dot\gamma(t_{i+1}^+)$$
    $$\mathsf{d}\psi_i^{-1} \frac{\mathsf{d} q_i}{\mathsf{d} t} = \mathsf{d}\psi_{i+1}^{-1} \frac{\mathsf{d} q_{i+1}}{\mathsf{d} t}$$

  • $C^2$ continuity Were we look as the transport of the derivative given by the connection $\nabla$. Now we need a manifold with a connection.
    $$\Big(\nabla_{\dot\gamma} \dot\gamma\Big) (t_{i+1}^-) = \Big(\nabla_{\dot\gamma} \dot\gamma\Big) (t_{i+1}^+)$$
    $$\mathsf{d}\psi_i^{-1} \Big[\frac{\mathsf{d}^2 q_i}{\mathsf{d} t^2} + \Gamma_{\psi_i, k}^{jl} \frac{\mathsf{d} q_i}{\mathsf{d} t} \frac{\mathsf{d} q_i}{\mathsf{d} t} \Big] = \mathsf{d}\psi_{i+1}^{-1} \Big[\frac{\mathsf{d}^2 q_{i+1}}{\mathsf{d} t^2} + \Gamma_{\psi_{i+1}, k}^{jl} \frac{\mathsf{d} q_{i+1}}{\mathsf{d} t} \frac{\mathsf{d} q_{i+1}}{\mathsf{d} t} \Big]$$

GSpline representation

Any GSpline of on a manifold is completely define by

  • 1 A Manifold of dimension $n$
  • 2 A sequence of $n_c$ scalar basis $B_i:[-1,1]\longrightarrow \mathbb{R}$
  • 3 An array $\boldsymbol{\tau}\in \mathbb{R}^N$ of interval lenghts
  • 4 An array $\mathbf{y}\in \mathbb{R}^{n_c n N}$ of interval of coefficients of the basis at each interval
    $$\mathbf{y} = [\mathbf{y}_0^0 \mathbf{y}_0^1 \cdots \mathbf{y}_0^{n-1} \mathbf{y}_1^0 \mathbf{y}_1^1 \cdots \mathbf{y}^{n-1}_N \mathbf{y}_N^0 \mathbf{y}_N^1 \cdots]$$
  • 5 An array of $N$ charts $(\psi_i, U_i)$
@rafaelrojasmiliani
Copy link
Owner Author

Desgin

classDiagram

GSpline --|>  LinearManifold
LinearManifold --|> Manifold
GSpline --|> Map


Loading

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant