-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
709 lines (656 loc) · 33.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
from pathlib import Path
import datetime
import os
import pickle
import click
import imageio
import numpy as np
import PIL.Image as Image
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import src.utils.utils_dataset as utils_dataset
import src.utils.utils_functions as utils_functions
import src.utils.utils_metrics as utils_metrics
import src.utils.utils_tensorboard as tb_utils
from src.lmdb_ds import LMDBDataset
from src.utils.VDAO_folds.Resnet50_reduced import Resnet50_Reduced
def create_image_strips(data_dict, counter, std_val, mean_val, type_model='DM_TCM_MM_CM'):
# Define background of the non-image areas
background_color = 'gray'
ref_img = (tb_utils.unnormalize(
data_dict['ref_frame'].unsqueeze(0), std_val, mean_val, one_channel=False) * 255).to(
torch.uint8)
tar_img = (tb_utils.unnormalize(
data_dict['tar_frame'].unsqueeze(0), std_val, mean_val, one_channel=False) * 255).to(
torch.uint8)
# Create an image with reference and target frames side by side
inputs = torch.cat((ref_img, tar_img), axis=0)
color = 'red' if data_dict["gt_label"] else 'dark_green'
ref_tar_strip = tb_utils.create_image_with_results(inputs,
['ref', f'tar {data_dict["frame_id"]}'],
[color, color],
background=background_color,
scale_factor=1,
text_area_height=75,
font_size=15,
add_border=True)
ref_tar_strip = np.moveaxis(ref_tar_strip, 0, -1)
# Create an image with results DM an TCM side by side
if type_model == 'DM_TCM_MM_CM':
inputs = torch.cat(
(data_dict['DM'].unsqueeze(0), data_dict['TCM'].unsqueeze(0),
data_dict['opening_output'].unsqueeze(0), data_dict['closing_output'].unsqueeze(0)),
axis=0)
elif type_model == 'DM_MM_TCM_CM':
inputs = torch.cat(
(data_dict['DM'].unsqueeze(0), data_dict['opening_output'].unsqueeze(0),
data_dict['closing_output'].unsqueeze(0), data_dict['TCM'].unsqueeze(0)),
axis=0)
inputs = torch.cat(3 * [inputs.unsqueeze(0)])
inputs = inputs.permute(1, 0, 2, 3)
color = 'red' if data_dict["class_output"] else 'dark_green'
if type_model == 'DM_TCM_MM_CM':
images_texts = [
'DM', 'TCM', f'open {data_dict["rad_open"]:.2f}', f'close {data_dict["rad_close"]:.2f}'
]
elif type_model == 'DM_MM_TCM_CM':
images_texts = [
'DM', f'open {data_dict["rad_open"]:.2f}', f'close {data_dict["rad_close"]:.2f}', 'TCM'
]
colors_texts = ['black' for i in range(len(images_texts) - 1)]
colors_texts = colors_texts + [color]
results_strip = tb_utils.create_image_with_results(inputs,
images_texts,
colors_texts,
background=background_color,
scale_factor=1,
text_area_height=75,
font_size=15,
add_border=True)
results_strip = np.moveaxis(results_strip, 0, -1)
# Gathers in a single image all frames target and reference and the results
H, W, C = ref_tar_strip.shape
h, w, _ = results_strip.shape
new_image = np.ones((h + H, W, C)).astype(np.uint8)
for channel in range(C):
new_image[:, :, channel] *= tb_utils.COLORS[background_color][channel]
new_image[0:H, 0:W, :] = ref_tar_strip
begin = (W - w) // 2
new_image[H:, begin:begin + w, :] = results_strip
return new_image
def print_info(text, log_path, init_block=False, end_block=False, sep='#'):
if init_block:
utils_functions.log(log_path, sep * 120, option='a', print_out=True, new_line=True)
utils_functions.log(log_path, text, option='a', print_out=True, new_line=True)
if end_block:
utils_functions.log(log_path, sep * 120, option='a', print_out=True, new_line=True)
def evaluate_model(model_path,
fold,
device,
net,
seed,
log_path,
alignment,
quiet=True,
dir_save=None,
save_videos=False,
save_frames=False,
quality=None,
fps=None):
metrics_all_videos = {}
# Load resnet
resnet = Resnet50_Reduced(device)
resnet.freeze()
# As frames in the LMDB are normalized, lets define the normalization transformation
normalize_transform = transforms.Normalize(mean=resnet.MEAN_IMAGENET, std=resnet.STD_IMAGENET)
to_tensor_transform = transforms.ToTensor()
transformations = transforms.Compose([to_tensor_transform, normalize_transform])
# Load testing dataset
ds = LMDBDataset(fold_number=fold,
type_dataset='test',
alignment=alignment,
transformations=transformations,
balance=False,
load_mode='keyframe',
max_samples=None)
# Separate one dataset per video
datasets_test = utils_dataset.split_data_set_into_videos_lmdb(ds)
loader_params = {'shuffle': False, 'num_workers': 0, 'worker_init_fn': seed}
total_pos = len([b for b in ds.keys_ds if b['class_keyframe'] is True])
total_neg = len([b for b in ds.keys_ds if b['class_keyframe'] is False])
print_info(f'Testing dataset (fold {fold}) loaded with {len(ds)} samples:', log_path)
print_info(f'Positive samples: {total_pos}', log_path)
print_info(f'Negative samples: {total_neg}', log_path)
print_info(f'Target objects: {", ".join(ds.get_objects())}', log_path, end_block=True)
# Load module
model = torch.load(model_path, map_location=device)
# Freezes everything
model.dissimilarity_module.freeze()
model.opening.freeze()
model.closing.freeze()
model.classification_function.freeze()
# Add hooks to obtain the outputs of the net
hooks_dict = utils_functions.register_hooks(model)
# Apply testing in each video
for id_vid, ds in enumerate(datasets_test):
# Making sure there is only a video at a time
assert len(set([k['video_name'] for k in ds.keys_ds])) == 1
vid_basename = ds.keys_ds[0]['video_name']
if not quiet:
pos = len([f for f in ds.keys_ds if f['class_keyframe'] is True])
neg = len([f for f in ds.keys_ds if f['class_keyframe'] is False])
print_info(
f'\nEvaluating video {vid_basename} ({len(ds)} frames / positives: {pos}, negatives: {neg})',
log_path)
data_loader_validate = DataLoader(ds,
**loader_params,
batch_size=model.temporal_consistency.voting_window)
count_frames = 0
metrics_vid = {
'pred_labels': [],
'pred_blobs': [],
'gt_labels': [],
'gt_bbs': [],
'computed_metrics': {
'frame_level': {},
'pixel_level': {}
},
'mean_loss': None
}
losses_vid = []
buffer_frames = {}
count_samples = 0
init_frame, central_frame, end_frame = 0, 0, 0
voting_window = model.temporal_consistency.voting_window
if save_videos:
path_save_videos = os.path.join(dir_save, f'{vid_basename}.avi')
if not quiet:
print_info(f'Video output path: {path_save_videos}', log_path)
writer = imageio.get_writer(path_save_videos, fps=fps, quality=quality, codec='libx264')
if save_frames:
dir_save_frames = os.path.join(dir_save, f'{vid_basename}/')
if not quiet:
print_info(f'Frames output path: {dir_save_frames}', log_path)
# Creating folders to separate frames
os.makedirs(os.path.join(dir_save_frames, 'ref'), exist_ok=True)
os.makedirs(os.path.join(dir_save_frames, 'tar'), exist_ok=True)
os.makedirs(os.path.join(dir_save_frames, 'closing'), exist_ok=True)
os.makedirs(os.path.join(dir_save_frames, 'opening'), exist_ok=True)
os.makedirs(os.path.join(dir_save_frames, 'dm'), exist_ok=True)
os.makedirs(os.path.join(dir_save_frames, 'tcm'), exist_ok=True)
# Evaluate frames
for batch, (ref_frames, tar_frames, labels_classes, bbs) in enumerate(data_loader_validate):
# Extract features from the frames with Resnet
feat_ref = resnet(ref_frames.to(device))
feat_tar = resnet(tar_frames.to(device))
# if there is only 1 sample in the batch len(feat_ref.shape) == 3
if len(feat_ref.shape) == 3:
feat_ref = feat_ref.unsqueeze(0)
feat_tar = feat_tar.unsqueeze(0)
labels_classes = labels_classes.unsqueeze(0)
samples_batch = len(feat_ref)
for i in range(samples_batch):
buffer_frames[count_samples] = {}
buffer_frames[count_samples]['feat_ref'] = feat_ref[i]
buffer_frames[count_samples]['feat_tar'] = feat_tar[i]
buffer_frames[count_samples]['class'] = labels_classes[i]
buffer_frames[count_samples]['frame_ref'] = ref_frames[i]
buffer_frames[count_samples]['frame_tar'] = tar_frames[i]
buffer_frames[count_samples]['bb'] = bbs[i]
count_samples += 1
init_frame = max(central_frame - voting_window // 2, 0)
end_frame = min(central_frame + voting_window // 2, len(ds))
# clean the buffer => remove frames out of the voting window
ids_to_remove = [i for i in buffer_frames if i < init_frame]
for i in ids_to_remove:
del buffer_frames[i]
while init_frame in buffer_frames and end_frame in buffer_frames and central_frame < len(
ds):
# Sets the dictionary with the data to be passed to the network (between init_frame and end_frame)
data = {
'feat_ref': [],
'feat_tar': [],
'class': [],
'bb': [],
'frame_ids': [],
'central_frame': central_frame,
'frame_ref': [],
'frame_tar': []
}
for i in range(init_frame, end_frame + 1, 1):
{data[k].append(v) for k, v in buffer_frames[i].items()}
data['frame_ids'].append(i)
position_central_frame = data['frame_ids'].index(central_frame)
data['feat_ref'] = torch.stack(data['feat_ref'])
data['feat_tar'] = torch.stack(data['feat_tar'])
outputs = model.inference_validation_test(data)
count_frames += 1
label_gt = ((data['class'][position_central_frame] * 1.)).to(device)
loss = nn.MSELoss()(outputs.squeeze(), label_gt.squeeze())
losses_vid.append(loss.item())
# Compute metrics
output_frame = (hooks_dict['hook_sum_pixels_on'].input[0].squeeze()).to(
torch.uint8).cpu().numpy()
class_out = (outputs > .5).item()
metrics_vid['pred_labels'].append(class_out * 1)
metrics_vid['pred_blobs'].append(output_frame)
metrics_vid['gt_labels'].append((label_gt.item() == 1) * 1)
metrics_vid['gt_bbs'].append(data['bb'][position_central_frame].numpy())
# generate frames to be included in the video
if save_videos or save_frames:
# DM -> TCM -> MM -> CM
if net == 'DM_TCM_MM_CM':
tcm = (hooks_dict['hook_opening'].input[0].squeeze() * 255).to(
torch.uint8).cpu()
# DM -> MM -> TCM -> CM
elif net == 'DM_MM_TCM_CM':
tcm = (hooks_dict['hook_sum_pixels_on'].input[0].squeeze() * 255).to(
torch.uint8).cpu()
opening_output = (hooks_dict['hook_opening'].output[0].squeeze() * 255).to(
torch.uint8).cpu()
closing_output = (hooks_dict['hook_closing'].output[0].squeeze() * 255).to(
torch.uint8).cpu()
frames_to_save = {
'frame_id':
central_frame,
'DM': (hooks_dict['hook_dissimilarity'].output[position_central_frame] *
255).to(torch.uint8).cpu(),
'TCM':
tcm,
'CM': [class_out],
'gt_label':
data['class'][position_central_frame].item(),
'ref_frame':
data['frame_ref'][position_central_frame],
'tar_frame':
data['frame_tar'][position_central_frame],
'closing_output':
closing_output,
'opening_output':
opening_output,
'outputs_model':
outputs.unsqueeze(0),
'class_output':
class_out,
'rad_open':
model.opening.se_sigmoid.radius.item(),
'rad_close':
model.closing.se_sigmoid.radius.item()
}
if save_videos:
img_strip = create_image_strips(frames_to_save, position_central_frame,
resnet.STD_IMAGENET, resnet.MEAN_IMAGENET, net)
writer.append_data(img_strip)
# Save each frame individually as image
if save_frames:
# Reference frame
ref_img = frames_to_save['ref_frame'].cpu()
ref_img = (tb_utils.unnormalize(ref_img.unsqueeze(0),
resnet.STD_IMAGENET,
resnet.MEAN_IMAGENET,
one_channel=False) * 255).to(
torch.uint8).squeeze()
Image.fromarray(np.moveaxis(ref_img.numpy(), 0, -1)).save(
os.path.join(dir_save_frames, 'ref', f'{init_frame}_ref.png'))
# Target frame
tar_img = frames_to_save['tar_frame'].cpu()
tar_img = (tb_utils.unnormalize(tar_img.unsqueeze(0),
resnet.STD_IMAGENET,
resnet.MEAN_IMAGENET,
one_channel=False) * 255).to(
torch.uint8).squeeze()
Image.fromarray(np.moveaxis(tar_img.numpy(), 0, -1)).save(
os.path.join(dir_save_frames, 'tar', f'{init_frame}_tar.png'))
Image.fromarray(frames_to_save['DM'].numpy()).save(
os.path.join(dir_save_frames, 'dm', f'{init_frame}_dm.png'))
Image.fromarray(frames_to_save['TCM'].numpy()).save(
os.path.join(dir_save_frames, 'tcm', f'{init_frame}_tcm.png'))
Image.fromarray(frames_to_save['opening_output'].numpy()).save(
os.path.join(dir_save_frames, 'opening', f'{init_frame}_opening.png'))
Image.fromarray(frames_to_save['closing_output'].numpy()).save(
os.path.join(dir_save_frames, 'closing', f'{init_frame}_closing.png'))
# Update frames
central_frame += 1
init_frame = max(central_frame - voting_window // 2, 0)
end_frame = min(central_frame + voting_window // 2, len(ds))
if end_frame >= len(ds):
end_frame = len(ds) - 1
# Finished testing / validating one video
if save_videos:
writer.close()
# make sure the amount of positive labels are equivalent to non-empty bounding boxes
assert sum([1 for b in metrics_vid['gt_bbs']
if tuple(b) != (0, 0, 0, 0)]) == sum(metrics_vid['gt_labels'])
####################################################################
# Compute metrics #
####################################################################
# mean_loss: MSE between output of the classification sigmoid (value between 0 and 1) and the groundtruth label
metrics_vid['mean_loss'] = np.mean(losses_vid)
################################
# Frame level
################################
# Compute frame-level metric (classification of the frame by the CM)
# consider predicting labels as 1, if the output of the CM > 0.5 vs. gt labels
rates = utils_metrics.calculate_TPrate_FPrate(metrics_vid['pred_labels'],
metrics_vid['gt_labels'])
tpr, fpr = rates['TP_rate'], rates['FP_rate']
aux = utils_metrics.get_positives_negatives(metrics_vid['pred_labels'],
metrics_vid['gt_labels'])
metrics_vid['computed_metrics']['frame_level'] = {
'DIS':
utils_metrics.calculate_DIS(metrics_vid['pred_labels'], metrics_vid['gt_labels']),
'TPR':
tpr,
'FPR':
fpr,
'groundtruth_pos':
aux['groundtruth positives'],
'groundtruth_neg':
aux['groundtruth negatives'],
'sum_tp':
aux['sum tp'],
'sum_fp':
aux['sum fp'],
'sum_tn':
aux['sum tn'],
'sum_fn':
aux['sum fn'],
'accuracy':
utils_metrics.calculate_accuracy(metrics_vid['pred_labels'], metrics_vid['gt_labels'])
}
assert metrics_vid['computed_metrics']['frame_level']['accuracy'] == (
aux['sum tp'] + aux['sum tn']) / (aux['sum tp'] + aux['sum tn'] + aux['sum fp'] +
aux['sum fn'])
##################################
# Compute pixel-level metrics #
##################################
# First, let's get an image containing the gt bounding box represented by a white area
gts = {
'labels': torch.tensor(metrics_vid['gt_labels']),
'bounding_boxes': metrics_vid['gt_bbs'],
# 'shape': tar_frames.squeeze().shape
}
metrics = utils_metrics.compute_DIS_pixel_level(gts,
metrics_vid['pred_blobs'],
alignment=alignment)
assert metrics['groundtruth_pos'] + metrics['groundtruth_neg'] == 201
metrics_vid['computed_metrics']['pixel_level'] = {
'TP': metrics['list_tp'],
'FP': metrics['list_fp'],
'FN': metrics['list_fn'],
'TN': metrics['list_tn'],
'TPR': metrics['TPR'],
'FPR': metrics['FPR'],
'DIS': metrics['DIS'],
'sum_tp': metrics['sum_tp'],
'sum_fp': metrics['sum_fp'],
'sum_tn': metrics['sum_tn'],
'sum_fn': metrics['sum_fn'],
'groundtruth_pos': metrics['groundtruth_pos'],
'groundtruth_neg': metrics['groundtruth_neg'],
'accuracy': metrics['accuracy'],
}
# Print metrics of the video
if not quiet:
print_info(f'Computed metrics:', log_path)
print_info(f'mean_loss: {metrics_vid["mean_loss"]:.4f}', log_path)
print_info(f'* Frame-level:', log_path)
print_info(f'\t* TP rate: {metrics_vid["computed_metrics"]["frame_level"]["TPR"]:.4f}',
log_path)
print_info(f'\t* FP rate: {metrics_vid["computed_metrics"]["frame_level"]["FPR"]:.4f}',
log_path)
print_info(f'\t* DIS: {metrics_vid["computed_metrics"]["frame_level"]["DIS"]:.4f}',
log_path)
print_info(
f'\t* Accuracy: {metrics_vid["computed_metrics"]["frame_level"]["accuracy"]:.4f}',
log_path)
print_info(f'* Pixel-level:', log_path)
print_info(f'\t* TP rate: {metrics_vid["computed_metrics"]["pixel_level"]["TPR"]:.4f}',
log_path)
print_info(f'\t* FP rate: {metrics_vid["computed_metrics"]["pixel_level"]["FPR"]:.4f}',
log_path)
print_info(f'\t* DIS: {metrics_vid["computed_metrics"]["pixel_level"]["DIS"]:.4f}',
log_path)
print_info(
f'\t* Accuracy: {metrics_vid["computed_metrics"]["pixel_level"]["accuracy"]:.4f}',
log_path,
end_block=True,
sep='-')
# Gather metrics of the video
metrics_all_videos[vid_basename] = metrics_vid
# Append all results in the all_testing_results.pickle
pickle_results_fp = os.path.join(dir_save, 'all_testing_results.pkl')
if os.path.isfile(pickle_results_fp):
existing_results = pickle.load(open(pickle_results_fp, 'rb'))
metrics_all_videos.update(existing_results)
pickle.dump(metrics_all_videos, open(pickle_results_fp, 'wb'))
@click.command()
@click.option('--fold', default=1, help='Fold number.', type=click.IntRange(1, 9, clamp=False))
@click.option('--device', default=None, help='GPU device.', type=click.INT)
@click.option('--seed',
default=123,
help='Random seed to achieve achieve reproducible results.',
type=click.INT)
@click.option('--fps', default=5, help='FPS to generate the videos.', type=click.INT)
@click.option('--quality', default=6, help='Quality of the generated videos.', type=click.INT)
@click.option('--net',
default='DM_MM_TCM_CM',
help='Network structure.',
type=click.Choice(['DM_MM_TCM_CM', 'DM_TCM_MM_CM'], case_sensitive=False))
@click.option('--alignment',
default='temporal',
help='Alignment used in the frames.',
type=click.Choice(['temporal', 'geometric'], case_sensitive=False))
@click.option(
"--dir_out",
required=True,
)
@click.option(
"--dir_pth",
type=click.Path(exists=False),
required=True,
)
@click.option('--fp_pkl', type=click.File(), required=True)
@click.option('--save_videos', is_flag=True)
@click.option('--save_frames', is_flag=True)
@click.option('--warnings_on/--warnings_off', default=True)
@click.option('--quiet', is_flag=True)
@click.option('--summarize_on/--summarize_off', default=True)
def main(fold, dir_pth, fp_pkl, net, fps, quality, dir_out, alignment, device, seed, quiet,
save_videos, save_frames, warnings_on, summarize_on):
# Create folder to put the results
if warnings_on and os.path.isdir(dir_out):
create_folder = None
while (create_folder not in ('n', 'y')):
create_folder = input(
f'\nDirectory {dir_out} where your results will be saved already exists. If you continue, existing results may be overwritten.\nDo you wish to continue? (y: yes / n: no) '
).lower()
if create_folder == 'y':
confirmation = None
while (confirmation not in ('n', 'y')):
confirmation = input(
'REALLY? ARE YOU SURE? CONTENTS MIGHT BE ERASED! (y: yes / n: no) ').lower()
if confirmation != 'y':
return
else:
return
os.makedirs(dir_out, exist_ok=True)
log_path = os.path.join(dir_out, f'testing_results_fold_{fold}.txt')
init_time = datetime.datetime.now()
print_info(f'Test initialized at: {init_time.strftime("%Y-%B-%d %H:%M:%S")}\n', log_path)
print_info(f'Parameters:', log_path, init_block=True)
print_info(f'fold: {fold}', log_path)
print_info(f'alignment: {alignment}', log_path)
print_info(f'dir_pth: {dir_pth}', log_path)
print_info(f'fp_pkl: {fp_pkl.name}', log_path)
print_info(f'net: {net}', log_path)
print_info(f'fps: {fps}', log_path)
print_info(f'quality: {quality}', log_path)
print_info(f'dir_out: {dir_out}', log_path)
print_info(f'device: {device}', log_path)
print_info(f'seed: {seed}', log_path)
print_info(f'quiet: {quiet}', log_path)
print_info(f'save_videos: {save_videos}', log_path)
print_info(f'save_frames: {save_frames}', log_path)
print_info(f'summarize_on: {summarize_on}', log_path)
print_info(f'warnings_on: {warnings_on}', log_path, end_block=True)
# Set device
print_info(f'Attempt to run on device: {device}', log_path)
if device is not None and torch.cuda.is_available():
try:
device = torch.device(f'cuda:{device}')
torch.cuda.set_device(device)
except:
print_info(f'{device} not found', log_path)
device = torch.device('cpu')
else:
print_info(f'{device} not found', log_path)
device = torch.device('cpu')
print_info(f'Running on {device}', log_path, end_block=True)
# Load the results.pickle file in the directory
if not os.path.isfile(fp_pkl):
print_info(f'\nError: File {fp_pkl} not found.', log_path)
return
if not os.path.isdir(dir_pth):
print_info(f'\nDirectory {dir_pth} was not found.', log_path)
return
pkl_file = pickle.load(open(fp_pkl, 'rb'))
total_val_epochs = len(pkl_file['validation_metrics'])
print_info(f'A total of {total_val_epochs} validation epochs were found.', log_path)
# DIS and loss on validation
DIS_validations = {
epoch: val_res['summary_validation']['DIS_validation']
for epoch, val_res in pkl_file['validation_metrics'].items()
}
loss_validations = {
epoch: val_res['summary_validation']['loss_validation']
for epoch, val_res in pkl_file['validation_metrics'].items()
}
# Loss on training
loss_training = {
epoch: training_loss['training CM']
for epoch, training_loss in pkl_file['training_loss'].items()
}
# Based on the validation DIS, get the best epoch
best_val_epoch = min(DIS_validations, key=DIS_validations.get)
min_val_DIS = DIS_validations[best_val_epoch]
# Print out
print_info(f'Best epoch based on the validation DIS: {best_val_epoch}', log_path)
print_info(f'Epoch {best_val_epoch} reached a validation DIS={min_val_DIS:.4f}', log_path)
# Find the .pth representing the trained model on the best epoch
pth_file_name = f'model_epoch_{best_val_epoch}.pth'
pth_path = utils_functions.find_file(directory=dir_pth, file_name=pth_file_name)
if not pth_path:
print_info(
f'\nError: .pth file ({pth_file_name}) representing the trained model on epoch {best_val_epoch} was not found.',
log_path)
return
print_info(f'Running model {pth_file_name} on the testing set.', log_path, end_block=True)
# Evaluate the model
evaluate_model(pth_path,
fold,
alignment=alignment,
net=net,
seed=seed,
quiet=quiet,
log_path=log_path,
dir_save=dir_out,
save_videos=save_videos,
save_frames=save_frames,
fps=fps,
quality=quality,
device=device)
# Print all metrics in a single result
if not summarize_on:
return
pickle_results_fp = os.path.join(dir_out, 'all_testing_results.pkl')
results = pickle.load(open(pickle_results_fp, 'rb'))
# sort results by video name
results = {k: results[k] for k in sorted(results.keys())}
# Compute metrics
def compute_metrics(type_metric='frame_level'):
assert type_metric in ['frame_level', 'pixel_level']
print_info('#' * 60, log_path)
print_info(f'EVALUATING {type_metric.upper()} METRIC WITH TEMPORAL ALIGNMENT', log_path)
print_info('#' * 60, log_path)
print_info('vid sum_tp sum_fp sum_tn sum_fn sum_gt_pos sum_gt_neg TPR FPR DIS', log_path)
list_tpr, list_fpr, list_dis = [], [], []
if type_metric == 'frame_level':
# Variables to compute overall DIS
sum_tp, sum_fp, sum_tn, sum_fn, sum_groundtruth_pos, sum_groundtruth_neg = 0, 0, 0, 0, 0, 0
for vid, res in results.items():
sum_tp += res['computed_metrics'][type_metric]['sum_tp']
sum_fp += res['computed_metrics'][type_metric]['sum_fp']
sum_tn += res['computed_metrics'][type_metric]['sum_tn']
sum_fn += res['computed_metrics'][type_metric]['sum_fn']
sum_groundtruth_pos += res['computed_metrics'][type_metric]['groundtruth_pos']
sum_groundtruth_neg += res['computed_metrics'][type_metric]['groundtruth_neg']
# Compute individual results for the current video
tp = res['computed_metrics'][type_metric]['sum_tp']
fp = res['computed_metrics'][type_metric]['sum_fp']
tn = res['computed_metrics'][type_metric]['sum_tn']
fn = res['computed_metrics'][type_metric]['sum_fn']
gt_pos = res['computed_metrics'][type_metric]['groundtruth_pos']
gt_neg = res['computed_metrics'][type_metric]['groundtruth_neg']
tpr = tp / (tp + fn) if tp + fn != 0 else 0
fpr = fp / (fp + tn) if fp + tn != 0 else 0
dis = np.sqrt((1 - tpr)**2 + fpr**2)
# Append tpr, fpr and dis to compute the mean
list_tpr.append(tpr)
list_fpr.append(fpr)
list_dis.append(dis)
print_info(f'{vid} {tp} {fp} {tn} {fn} {gt_pos} {gt_neg} {tpr} {fpr} {dis}',
log_path)
# Compute overall results for frame level
overall_results = utils_metrics.compute_dis_overall(sum_groundtruth_pos,
sum_groundtruth_neg, sum_tp, sum_fp,
sum_tn, sum_fn)
elif type_metric == 'pixel_level':
gt_labels, gt_bbs, pred_blobs = [], [], []
for vid, res_vid in results.items():
gts_dict = {
'labels': torch.tensor(res_vid['gt_labels']),
'bounding_boxes': res_vid['gt_bbs']
}
res = utils_metrics.compute_DIS_pixel_level(gts_dict,
res_vid['pred_blobs'],
alignment='temporal')
# Compute individual results for the current video
dis = res['DIS']
tpr = res['TPR']
fpr = res['FPR']
# Append tpr, fpr and dis to compute the mean
list_tpr.append(tpr)
list_fpr.append(fpr)
list_dis.append(dis)
# Group with previous results so the overall DIS can be computed
gt_labels += res_vid['gt_labels']
gt_bbs += res_vid['gt_bbs']
pred_blobs += res_vid['pred_blobs']
print_info(
f"{vid} {res['sum_tp']} {res['sum_fp']} {res['sum_tn']} {res['sum_fn']} {res['groundtruth_pos']} {res['groundtruth_neg']} {tpr} {fpr} {dis}",
log_path)
# Compute overall results for pixel level
gts_dict = {
'labels': torch.tensor(gt_labels),
'bounding_boxes': gt_bbs,
}
overall_results = utils_metrics.compute_DIS_pixel_level(gts_dict,
pred_blobs,
alignment='temporal')
# Print results
print_info('\n', log_path)
print_info(
f'Mean values: mean TPR: {sum(list_tpr)/len(list_tpr)} mean FPR: {sum(list_fpr)/len(list_fpr)} mean DIS: {sum(list_dis)/len(list_dis)} ',
log_path)
print_info(
f"OVERALL \t TPR: {overall_results['TPR']} \t FPR: {overall_results['FPR']} \t DIS: {overall_results['DIS']}",
log_path)
# Compute FRAME-LEVEL metrics
compute_metrics(type_metric='frame_level')
# Compute OBJECT-LEVEL metrics
compute_metrics(type_metric='pixel_level')
if __name__ == "__main__":
main()