Skip to content

Latest commit

 

History

History
97 lines (68 loc) · 3.96 KB

File metadata and controls

97 lines (68 loc) · 3.96 KB

Spatio-Temporal Attention-based Unet for Field Boundary Detection

First place solution for NASA Harvest Field Boundary Detection Challenge

{{model_nasa_rwanda_field_boundary_competition_gold_v1}}

MLHub model id: model_nasa_rwanda_field_boundary_competition_gold_v1. Browse on Radiant MLHub.

ML Model Documentation

Please review the model architecture, license, applicable spatial and temporal extents and other details in the model documentation.

System Requirements

Hardware Requirements

Training Inferencing
RAM 25 GB RAM 16 GB RAM
NVIDIA GPU A100 80GB Optional (but very slow)

Get Started With Inferencing

First clone this Git repository.

git clone https://github.com/radiantearth/model_nasa_rwanda_field_boundary_competition_gold.git
cd model_nasa_rwanda_field_boundary_competition_gold/

After cloning the model repository, you can use the Docker Compose runtime files as described below.

Pull or Build the Docker Image

Pull pre-built image from Docker Hub (recommended):

docker pull docker.io/radiantearth/model_nasa_rwanda_field_boundary_competition_gold:1

Or build image from source:

docker build -t radiantearth/model_nasa_rwanda_field_boundary_competition_gold:1 -f Dockerfile .

Run Model to Generate New Inferences

  1. Prepare your input and output data folders. The data/ folder in this repository contains some placeholder files to guide you.

    • The data/ folder must contain:
      • input/: input folder containing the tile imagery. This folder has the following naming convention: {dataset_id}_{tile_id}_{year}_{month}. For example, for a dataset_id (nasa_rwanda_field_boundary_competition), a tile_id (00) and a year (2021), we'll have the following structure:

            nasa_rwanda_field_boundary_competition_source_test_00_2021_03/
            nasa_rwanda_field_boundary_competition_source_test_00_2021_04/
            nasa_rwanda_field_boundary_competition_source_test_00_2021_08/
            nasa_rwanda_field_boundary_competition_source_test_00_2021_10/
            nasa_rwanda_field_boundary_competition_source_test_00_2021_11/
            nasa_rwanda_field_boundary_competition_source_test_00_2021_12/
        

        Notice that the months are fixed and have to be : ['2021_03', '2021_04', '2021_08', '2021_10', '2021_11', '2021_12'].

      • The output/ folder is where the model will write inferencing results.

  2. Set INPUT_DATA and OUTPUT_DATA environment variables corresponding with your input and output folders. These commands will vary depending on operating system and command-line shell:

    # change paths to your actual input and output folders
    export INPUT_DATA="/home/my_user/model_nasa_rwanda_field_boundary_competition_gold/data/input/"
    export OUTPUT_DATA="/home/my_user/model_nasa_rwanda_field_boundary_competition_gold/data/output/"
    export DATASET_ID="nasa_rwanda_field_boundary_competition"
  3. Run the appropriate Docker Compose command for your system

    docker compose up model_nasa_rwanda_field_boundary_competition_gold_v1
  4. Wait for the docker compose to finish running, then inspect the OUTPUT_DATA folder for results.

Understanding Output Data

Please review the model output format and other technical details in the model documentation.