-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkalman.c
190 lines (147 loc) · 5.27 KB
/
kalman.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Translation of kalman.py
#include <stdio.h>
#include <string.h>
#include "matvec.h"
#include "kalman.h"
void init_kalman3_pa(kalman3_pa_t *k, KALMAN_FLOAT sampleRate,
KALMAN_FLOAT q, KALMAN_FLOAT pR, KALMAN_FLOAT aR)
{
memset(k, 0, sizeof(kalman3_pa_t));
KALMAN_FLOAT T = k->T = 1.0f/sampleRate;
kalman3_pa_set_covariance(k, sampleRate, q, pR, aR);
// Initial error covariance
IDENTIFY_MATRIX_3X3(k->P);
// Motion matrix
IDENTIFY_MATRIX_3X3(k->A);
k->A[0][1] = T;
k->A[0][2] = 0.5*T*T;
k->A[1][2] = T;
// Initial state
k->x_hat[0] = k->x_hat[1] = k->x_hat[2] = 0;
k->x_hat_est[0] = k->x_hat_est[1] = k->x_hat_est[2] = 0;
// Measurement matrix, measured = H*state + noise
k->H[0][0] = 1.0f;
k->H[0][1] = k->H[0][2] = 0;
k->H[1][2] = 1.0f;
k->H[1][0] = k->H[1][1] = 0;
}
void kalman3_pa_set_covariance(kalman3_pa_t *k, KALMAN_FLOAT sampleRate,
KALMAN_FLOAT q, KALMAN_FLOAT pR,
KALMAN_FLOAT aR)
{
KALMAN_FLOAT T = k->T = 1.0f/sampleRate;
// Process covariance
k->Q[0][0] = T*T*T*T*T / 4 * q;
k->Q[0][1] = k->Q[1][0] = T*T*T*T / 2 * q;
k->Q[0][2] = k->Q[1][1] = k->Q[2][0] = T*T*T * q;
k->Q[0][2] /= 2;
k->Q[1][2] = k->Q[2][1] = T*T * q;
k->Q[2][2] = T * q;
// Measurement covariance
k->R[0][0] = pR;
k->R[0][1] = 0;
k->R[1][0] = 0;
k->R[1][1] = aR;
}
void step_kalman3_pa(kalman3_pa_t *k, KALMAN_FLOAT pos, KALMAN_FLOAT acc)
{
KALMAN_FLOAT obs[2] = { pos, acc };
KALMAN_FLOAT tmp2[3][3], tmp3[3][3];
KALMAN_FLOAT tmpv[3], det;
KALMAN_FLOAT I[3][3]={{1,0,0},{0,1,0},{0,0,1}};
// Make prediction
MAT_DOT_VEC_3X3(k->x_hat_est, k->A, k->x_hat); // result 1x3
MATRIX_PRODUCT_3X3_3X3T(tmp2, k->P, k->A);
MATRIX_PRODUCT_3X3(tmp3, k->A, tmp2);
MATRIX_ADD_3X3(k->P_est, tmp3, k->Q);
// Update estimate
MAT_DOT_VEC_3X2(tmpv, k->H, k->x_hat_est); // result
VEC_DIFF_2(k->error_x, obs, tmpv);
MATRIX_PRODUCT_3X3_3X2T(tmp2, k->P, k->H); // result 2x3
MATRIX_PRODUCT_3X2_2X3(tmp3, k->H, tmp2); // result 2x2
MATRIX_ADD_2X2(k->error_P, tmp3, k->R); // result 2x2
MATRIX_PRODUCT_3X3_3X2T(tmp3, k->P_est, k->H); // result 2x3
MAT_SOLVE_AX_EQ_B_2X3_2X2(k->K, tmp3, k->error_P); // result 2x3
MAT_DOT_VEC_2X3_FULL(tmpv, k->K, k->error_x); // result 1x3
VEC_SUM(k->x_hat, k->x_hat_est, tmpv); // result 1x3
MATRIX_PRODUCT_2X3_3X2(tmp2, k->K, k->H);
MATRIX_SUB_3X3(tmp3, I, tmp2);
MATRIX_PRODUCT_3X3(k->P, tmp3, k->P_est);
}
void run_kalman3_pa(KALMAN_FLOAT sampleRate,
KALMAN_FLOAT q, KALMAN_FLOAT pR, KALMAN_FLOAT aR,
KALMAN_FLOAT *pos, KALMAN_FLOAT *acc,
KALMAN_FLOAT *result, int N)
{
kalman3_pa_t k;
init_kalman3_pa(&k, sampleRate, q, pR, aR);
while (N-- > 0) {
step_kalman3_pa(&k, *(pos++), *(acc++));
*(result++) = k.x_hat[0];
*(result++) = k.x_hat[1];
*(result++) = k.x_hat[2];
}
}
void init_kalman2_p(kalman2_p_t *k, KALMAN_FLOAT sampleRate,
KALMAN_FLOAT q, KALMAN_FLOAT pR)
{
memset(k, 0, sizeof(kalman2_p_t));
KALMAN_FLOAT T = k->T = 1.0f/sampleRate;
// Process covariance
k->Q[0][0] = T*T*T / 3 * q;
k->Q[0][1] = k->Q[1][0] = T*T / 2 * q;
k->Q[1][1] = T * q;
// Measurement covariance
k->R = pR;
// Initial error covariance
IDENTIFY_MATRIX_2X2(k->P);
// Motion matrix
IDENTIFY_MATRIX_2X2(k->A);
k->A[0][0] = 1;
k->A[0][1] = T;
k->A[1][1] = 1;
// Initial state
k->x_hat[0] = k->x_hat[1] = 0;
k->x_hat_est[0] = k->x_hat_est[1] = 0;
// Measurement matrix, measured = H*state + noise
k->H[0] = 1.0f;
k->H[1] = 0;
}
void step_kalman2_p(kalman2_p_t *k, KALMAN_FLOAT pos)
{
KALMAN_FLOAT obs = pos;
KALMAN_FLOAT tmp2[2][2], tmp3[2][2];
KALMAN_FLOAT tmp, tmpv[2], det;
KALMAN_FLOAT I[2][2]={{1,0},{0,1}};
// Make prediction
MAT_DOT_VEC_2X2(k->x_hat_est, k->A, k->x_hat); // result 2x1
MATRIX_PRODUCT_2X2_2X2T(tmp2, k->P, k->A);
MATRIX_PRODUCT_2X2(tmp3, k->A, tmp2);
MATRIX_ADD_2X2(k->P_est, tmp3, k->Q);
// Update estimate
DOT_VEC_1X2_2X1(tmp, k->H, k->x_hat_est); // result 1x1
k->error_x = obs - tmp;
MAT_DOT_VEC_2X2(tmpv, k->P, k->H); // result 2x1
DOT_VEC_1X2_2X1(tmp, k->H, tmpv); // result 1
k->error_P = tmp + k->R;
MATRIX_PRODUCT_2X2_2X1T(tmpv, k->P_est, k->H); // result 2x1
MAT_SOLVE_AX_EQ_B_1X2_1X1(k->K, tmpv, k->error_P); // result 2x1
VEC_SCALE_2(tmpv, k->error_x, k->K); // result 2x1
VEC_SUM(k->x_hat, k->x_hat_est, tmpv); // result 2x1
MATRIX_PRODUCT_2X1_1X2(tmp2, k->K, k->H); // result 2x2
MATRIX_SUB_2X2(tmp3, I, tmp2);
MATRIX_PRODUCT_2X2(k->P, tmp3, k->P_est);
}
void run_kalman2_p(KALMAN_FLOAT sampleRate,
KALMAN_FLOAT q, KALMAN_FLOAT pR,
KALMAN_FLOAT *pos,
KALMAN_FLOAT *result, int N)
{
kalman2_p_t k;
init_kalman2_p(&k, sampleRate, q, pR);
while (N-- > 0) {
step_kalman2_p(&k, *(pos++));
*(result++) = k.x_hat[0];
*(result++) = k.x_hat[1];
}
}