-
Notifications
You must be signed in to change notification settings - Fork 15
/
18-Programming-with-ggplot2.Rmd
234 lines (179 loc) · 6.48 KB
/
18-Programming-with-ggplot2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# (PART\*) Advanced Topics {-}
# Programming with ggplot2
**Learning objectives:**
- Programming single and multiple components
- Use components, annotation, and additional arguments in a plot
- Functional programming
---
```{r message=FALSE, warning=FALSE, include=FALSE, paged.print=FALSE}
library(tidyverse)
```
**What are the components of a plot?**
- data.frame
- aes()
- Scales
- Coords systems
- Theme components
## Programming single and multiple components
In ggplot2 it is possible to build up plot components easily. This is a good practice to reduce duplicated code.
Generalising code allows you with more flexibility when making customised plots.
### Components
One example of a component of a plot is this one below:
```{r}
bestfit <- geom_smooth(
method = "lm",
se = FALSE,
colour = alpha("steelblue", 0.5),
size = 2)
```
This single component can be placed inside the syntax of the grammar of graphics and used as a plot layer.
```{r}
ggplot(mpg, aes(cty, hwy)) +
geom_point() +
bestfit
```
Another way is to bulid a layer passing through build a function:
```{r}
geom_lm <- function(formula = y ~ x, colour = alpha("steelblue", 0.5),
size = 2, ...) {
geom_smooth(formula = formula, se = FALSE, method = "lm", colour = colour,
size = size, ...)
}
```
And the apply the function layer to the plot
```{r}
ggplot(mpg, aes(displ, 1 / hwy)) +
geom_point() +
geom_lm(y ~ poly(x, 2), size = 1, colour = "red")
```
The book points out attention to the "open" parameter **...**.
A suggestion is to use it inside the function instead of in the function parameters definition.
Instead of only one component, we can build a plot made of more components.
```{r}
geom_mean <- function() {
list(
stat_summary(fun = "mean", geom = "bar", fill = "grey70"),
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4)
)
}
```
Whit this result:
```{r message=FALSE, warning=FALSE, paged.print=FALSE}
ggplot(mpg, aes(class, cty)) + geom_mean()
```
## Use components, annotation, and additional arguments in a plot
We have just seen some examples on how to make new components, what if we want to know more about existing components?
As an example the `borders()` option function, provided by {ggplot2} to create a layer of map borders.
> "A quick and dirty way to get map data (from the maps package) on to your plot."
```{r}
borders <- function(database = "world", regions = ".", fill = NA,
colour = "grey50", ...) {
df <- map_data(database, regions)
geom_polygon(
aes_(~long, ~lat, group = ~group),
data = df, fill = fill, colour = colour, ...,
inherit.aes = FALSE, show.legend = FALSE
)
}
```
```{r message=FALSE, warning=FALSE, paged.print=FALSE}
library(maps)
data(us.cities)
capitals <- subset(us.cities, capital == 2)
ggplot(capitals, aes(long, lat)) +
borders("world", xlim = c(-130, -60), ylim = c(20, 50)) +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()
```
We can even add addtional arguments, such as those ones to modify and add things:
modifyList()
do.call()
```{r}
geom_mean <- function(..., bar.params = list(), errorbar.params = list()) {
params <- list(...)
bar.params <- modifyList(params, bar.params)
errorbar.params <- modifyList(params, errorbar.params)
bar <- do.call("stat_summary", modifyList(
list(fun = "mean", geom = "bar", fill = "grey70"),
bar.params)
)
errorbar <- do.call("stat_summary", modifyList(
list(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.4),
errorbar.params)
)
list(bar, errorbar)
}
```
And here is the result:
```{r}
ggplot(mpg, aes(class, cty)) +
geom_mean(
colour = "steelblue",
errorbar.params = list(width = 0.5, size = 1)
)
```
## Functional programming
An example is to make a geom. For this we can have a look at the **"Corporate Reputation"** data from #TidyTuesday 2022 week22.
```{r}
poll <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-05-31/poll.csv')
reputation <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-05-31/reputation.csv')
rep2<-reputation%>%
group_by(company,industry)%>%
summarize(score,rank)%>%
ungroup()%>%
mutate(year=2022)
full <- poll%>%
filter(!is.na(year))%>%
full_join(rep2,by=c("2022_rank"="rank","2022_rq"="score","company","industry","year")) %>%
count(year,company,industry,"rank"=`2022_rank`,"score"=`2022_rq`,sort=T) %>%
arrange(-year)
##################
# mapping = aes(x = fct_reorder(x,-y), y = y, fill = y, color = y, label = y)
rank_plot <- function(data,mapping) {
data %>%
ggplot(mapping)+ # aes(x=fct_reorder(x,-y),y=y)
geom_col(width =0.3, # aes(fill=rank)
show.legend = F)+
geom_text(hjust=0,fontface="bold", # aes(label=rank,color=rank),
show.legend = F)+
scale_y_discrete(expand = c(0, 0, .5, 0))+
coord_flip()+
ggthemes::scale_fill_continuous_tableau(palette = "Green-Gold")+
ggthemes::scale_color_continuous_tableau(palette = "Green-Gold")+
labs(title="",
x="",y="")+
theme(axis.text.x = element_blank(),
axis.text.y = element_text(face="bold"),
axis.ticks.x = element_blank(),
axis.ticks.y = element_line(size=2),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.major.y = element_line(size=2),
plot.background = element_rect(color="grey95",fill="grey95"),
panel.background = element_rect(color="grey92",fill="grey92"))
}
df<-full%>%
filter(year==2017,
industry=="Retail")
rank_plot(data = df,
mapping = aes(x=fct_reorder(company,-rank),y=rank,
fill = rank, color = rank, label = rank))
```
## References
- [extending ggplot2](https://ggplot2.tidyverse.org/articles/extending-ggplot2.html)
- [functions](https://adv-r.hadley.nz/functions.html)
- [expressions](http://adv-r.had.co.nz/Expressions.html)
- [functional programming](http://adv-r.had.co.nz/Functional-programming.html)
- [advanced R - functionals](https://adv-r.hadley.nz/fp.html)
---
## Meeting Videos
### Cohort 1
`r knitr::include_url("https://www.youtube.com/embed/jf-Qn4iFqHY")`
<details>
<summary> Meeting chat log </summary>
```
00:41:31 Priyanka Gagneja: There’s a lot of disturbance :(
01:00:48 Priyanka Gagneja: https://plotly.com/ggplot2/setting-graph-size/
```
</details>