forked from yfukasawa/LongQC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlq_coverage.py
711 lines (608 loc) · 30.9 KB
/
lq_coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import math, logging, sys
import numpy as np
import pandas as pd
import scipy.stats as st
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from sklearn import mixture
from operator import itemgetter
from scipy.signal import argrelmax
from mixEM import mixem
from logging import getLogger
logger = getLogger(__name__)
"""
#### deprecated
# df: DataFrame of pandas
# k : the parameter for the number of component in GMM.
def est_coverage_dist(df, column_i, k=2):
m_f = mixture.GaussianMixture(n_components=k).fit(df[column_i].values.reshape(-1,1),1)
order = m_f.weights_/[e[0] for inner in m_f.covariances_ for e in inner] # w/\sigma
m_i = 1 if order[0] < order[1] else 0
return (m_f.means_[m_i][0], m_f.covariances_[m_i][0][0])
#### deprecated
# df: DataFrame of pandas
# k : the parameter for the number of component in GMM.
# nbs: the number of bootstrap
# Empirically, we determined k=2, main component and background component.
# This returns relatively narrow region, and actually not so reliable...
def est_confidence_interval_mu(df, column_i, k=2, nbs=1000):
#_means = np.zeros((k, nbs))
#_covs = np.zeros((k, nbs))
_mus = np.zeros(nbs)
#_sigmas = np.zeros(nbs)
#df = df[df[column_i] != 0.0]
# full model
m_f = mixture.GaussianMixture(n_components=k).fit(df[column_i].values.reshape(-1,1),1)
order = m_f.weights_/[e[0] for inner in m_f.covariances_ for e in inner] # w/\sigma
m_i = 1 if order[0] < order[1] else 0
#b_i = m_i ^ 1
#for i in range(0, nbs):
i = 0
while(i < nbs):
x = df[column_i].values[np.random.randint(df.shape[0], size=df.shape[0])]
_m = mixture.GaussianMixture(n_components=k).fit(x.reshape(-1,1),1)
if _m.converged_:
_o = _m.weights_/[e[0] for inner in _m.covariances_ for e in inner] # w/\sigma
_m_i = 1 if _o[0] < _o[1] else 0
_mus[i] = _m.means_[_m_i][0]
#_sigmas[i] = np.sqrt(_m.covariances_[_m_i][0][0])
i += 1
return st.t.interval(0.99, len(_mus)-1, loc=np.mean(_mus), scale=st.sem(_mus))
"""
class LqCoverage:
UNMAPPED_FRACTION_THRESHOLD = 0.4
UNMAPPED_FRACTION_PARAM_MIN = 0.05
UNMAPPED_FRACTION_PARAM_MAX = 0.2
COV_CORRECTION = 0.9 # experimental term.
DIV_SCORE_THRESHOLD = 0.25 # experimental.
COV_THRESHOLD_FOR_DIV_SC = 25 # experimental.
LENGTH_BIN_THRESHOLD = 100
# table index
READ_NAME_COLUMN = 0
QLENGTH_COLUMN = 1
N_MBASE_COLUMN = 2
MED_READ_COV_CORS = 4
#GOOD_READ_COV_CORS = 5
T1_COVERAGE_COLUMN = 5
QV_COLUMN = 6
DIV_COLUMN = 7
COVERAGE_COLUMN = 8
def __init__(self, table_path, isTranscript=False, control_filtering=None, engine='python'):
self.df = pd.read_table(table_path, sep='\t', header=None, dtype={3: str, 4: str})
self.min_lambda = None
self.max_lambda = None
self.unmapped_frac_trimmed = -1.0
self.unmapped_frac_untrimmed = -1.0
self.unmapped_frac_med = -1.0
#self.unmapped_bad_frac = -1.0
self.high_div_frac = -1.0
self.model = None
self.mean_main = None
self.cov_main = None
self.main_comp_index = None
self.control_reads = None
self.low_coverage = None
self.no_coverage = None
if control_filtering is not None:
self.df_control = pd.read_table(control_filtering, sep='\t', header=None)
self.control_reads = self.df_control[self.df_control[LqCoverage.T1_COVERAGE_COLUMN] >= 0.5][0].tolist()
self.df = self.df[~self.df[LqCoverage.READ_NAME_COLUMN].isin(self.control_reads)] # remove control from the list
# for final conclusion
self.warnings = []
self.errors = []
# for transcript type data. e.g. direct RNA, cDNA, Iso-seq, etc
self.mix_model = None
self.mode_logn_main = None
self.mu_logn_main = None
self.sigma_logn_main = None
self.isTranscript = isTranscript
logger.info("Estimating coverage distribution..")
self.__est_coverage()
logger.info("Estimation of coverage distribution finished.")
def get_mean(self):
if not self.mean_main:
logger.warning("Mean has no value. Do estimation first.")
return self.mean_main
def get_sd(self):
if not self.cov_main:
logger.warning("SD has no value. Do estimation first.")
return np.sqrt(self.cov_main)
def get_logn_mode(self):
if not self.mode_logn_main:
logger.warning("Mode of lognormal has no value. Do estimation first.")
return None
return self.mode_logn_main
def get_logn_mu(self):
if not self.mu_logn_main:
logger.warning("Mu of lognormal has no value. Do estimation first.")
return self.mu_logn_main
def get_logn_sigma(self):
if not self.sigma_logn_main:
logger.warning("sigma of lognormal has no value. Do estimation first.")
return self.sigma_logn_main
def get_expected_zero_rate(self):
if not self.mode_logn_main and not self.mean_main:
logger.warning("Mode of lognormal and mean of GMM has no value. Do estimation first.")
return None
elif not self.mode_logn_main:
return (self.mean_main, 1.3865*0.64086**self.mean_main)
else:
return (self.mode_logn_main, 1.3865*0.64086**self.mode_logn_main) # experimental
def get_unmapped_frac(self):
if self.unmapped_frac_trimmed == -1.0:
logger.warning("Unmapped fraction has no value. Do estimation first.")
return self.unmapped_frac_trimmed
def get_unmapped_med_frac(self):
if self.unmapped_frac_med == -1.0:
logger.warning("Unmapped medial fraction has no value. Do estimation first.")
return self.unmapped_frac_med
#def get_unmapped_bad_frac(self):
# if self.unmapped_bad_frac == -1.0:
# logger.warning("Unmapped bad read fraction has no value. Do estimation first.")
# return self.unmapped_bad_frac
def is_no_coverage(self):
if self.no_coverage != None:
return self.no_coverage
else:
return None
def is_low_coverage(self):
if self.low_coverage != None:
return self.low_coverage
else:
return None
# experimental
def get_high_div_frac(self):
if self.high_div_frac == -1.0:
logger.warning("Highly divergent read fraction has no value. Do estimation first.")
return self.high_div_frac
def get_control_num(self):
if self.control_reads:
return len(self.control_reads)
else:
return 0.0
def get_control_frac(self):
if self.control_reads:
return len(self.control_reads)/(len(self.control_reads) + len(self.df))
else:
return 0.0
def get_errors(self):
return self.errors
def get_warnings(self):
return self.warnings
def __est_coverage(self):
self.unmapped_frac_trimmed = self.df[LqCoverage.T1_COVERAGE_COLUMN].values[np.where(self.df[LqCoverage.T1_COVERAGE_COLUMN] == 0.0)].shape[0] \
/ self.df.shape[0]
self.unmapped_frac_untrimmed = self.df[LqCoverage.N_MBASE_COLUMN].values[np.where(self.df[LqCoverage.N_MBASE_COLUMN] == 0.0)].shape[0] \
/ self.df.shape[0]
self.unmapped_frac_med = self.df[LqCoverage.MED_READ_COV_CORS].values[np.where(self.df[LqCoverage.MED_READ_COV_CORS] == '0')].shape[0] \
/ self.df.shape[0]
#self.unmapped_bad_frac = self.df[LqCoverage.GOOD_READ_COV_CORS].values[np.where(self.df[LqCoverage.GOOD_READ_COV_CORS] == '0')].shape[0] \
# / self.df.shape[0]
self.high_div_frac = self.df[LqCoverage.DIV_COLUMN].values[\
np.where((self.df[LqCoverage.DIV_COLUMN] >= LqCoverage.DIV_SCORE_THRESHOLD) & \
(self.df[LqCoverage.T1_COVERAGE_COLUMN] >= LqCoverage.COV_THRESHOLD_FOR_DIV_SC) & \
(self.df[LqCoverage.MED_READ_COV_CORS] != '0') )].shape[0] \
/ self.df.shape[0]
#logger.info("Unmapped fraction: %.3f (naive), %.3f (coverage considered)" % (self.unmapped_frac_untrimmed, self.unmapped_frac_trimmed))
model_main_comp = self.__est_coverage_dist_gmm(k_i=2)
self.model = model_main_comp[0]
self.mean_main = model_main_comp[1]
self.cov_main = model_main_comp[2]
self.main_comp_index = model_main_comp[3]
raw_hist = plt.hist((self.df[LqCoverage.N_MBASE_COLUMN] / self.df[LqCoverage.QLENGTH_COLUMN]),
alpha=0.2,
bins=np.arange(0,
self.mean_main + 10 * np.sqrt(self.cov_main) + self.mean_main / 10,
self.mean_main / 10),
color='green',
density=True)
plt.close()
self.low_coverage = self.__looks_lowcoverage(raw_hist)
if self.unmapped_frac_med >= LqCoverage.UNMAPPED_FRACTION_THRESHOLD:
logger.warning("The fraction of zero coverage read is high %.3f" % self.unmapped_frac_med)
self.min_lambda = -1 * math.log(self.unmapped_frac_med - LqCoverage.UNMAPPED_FRACTION_PARAM_MIN)
self.max_lambda = -1 * math.log(self.unmapped_frac_med - LqCoverage.UNMAPPED_FRACTION_PARAM_MAX)
range_str = str(self.min_lambda) + "-" + str(self.max_lambda)
logger.warning("If and only if the data is healthy, very rough estimated coverage range is %s." % range_str)
if self.model is None:
self.low_coverage = None # no_coverage is a stronger condition.
self.no_coverage = True
logger.warning("No coverage data is available.")
return
# skewed dist. sometimes occur in low coverage data and/or long tail
if self.low_coverage and self.unmapped_frac_med < LqCoverage.UNMAPPED_FRACTION_THRESHOLD and not self.isTranscript:
logger.warning("The fraction of zero coverage read is not too high %.3f, but still looks low coverage" % self.unmapped_frac_med)
logger.warning(self.unmapped_frac_med)
self.__est_coverage_dist_lognorm_norm()
self.mode_logn_main = np.exp(self.mix_model[1][1] - self.mix_model[2][1]**2)
self.mu_logn_main = self.mix_model[1][1]
self.sigma_logn_main = self.mix_model[2][1]
# edgy case fix.
if self.low_coverage and self.unmapped_frac_med >= LqCoverage.UNMAPPED_FRACTION_THRESHOLD and not self.isTranscript:
logger.warning("The fraction of zero coverage read is too high %.3f." % self.unmapped_frac_med)
logger.warning(self.unmapped_frac_med)
self.__est_coverage_dist_lognorm_norm()
self.mode_logn_main = np.exp(self.mix_model[1][1] - self.mix_model[2][1]**2)
self.mu_logn_main = self.mix_model[1][1]
self.sigma_logn_main = self.mix_model[2][1]
# RNA and long tail case
if self.isTranscript:
logger.warning("Distribution looks long tail RNA type coverage. Apply lognorm.")
self.__est_coverage_dist_lognorm_norm()
self.mode_logn_main = np.exp(self.mix_model[1][1] - self.mix_model[2][1]**2*0.5)
self.mu_logn_main = self.mix_model[1][1]
self.sigma_logn_main = self.mix_model[2][1]
def __looks_lowcoverage(self, hist):
relmaxs = argrelmax(hist[0])
if hist[0][0] / np.sum(hist[0]) <0.01:
return False
for mx_i in relmaxs[0]:
if hist[0][mx_i] > (hist[0][0] / 5):
return False
break
return True
def plot_coverage_dist(self, fp=None):
if self.min_lambda and self.max_lambda:
plt.figure(figsize=(12,5))
ax1 = plt.subplot(1,2,1)
plt.grid(True)
pois_min = st.poisson(self.min_lambda)
pois_max = st.poisson(self.max_lambda)
pois_x = np.arange(int(self.mean_main+4 * np.sqrt(self.cov_main)) + 1)
pois_y_min = pois_min.pmf(pois_x)
pois_y_max = pois_max.pmf(pois_x)
plt.xlim(0, 50)
plt.plot(pois_x, pois_y_min, label="Fitted Model by Poisson model (" + "%.3f" % self.min_lambda + ")")
plt.plot(pois_x, pois_y_max, label="Fitted Model by Poisson model (" + "%.3f" % self.max_lambda + ")")
plt.xlabel('Per read coverage')
plt.ylabel('Probability density')
plt.hist(self.df[LqCoverage.COVERAGE_COLUMN],
alpha=0.2,
bins=np.arange(0,
self.mean_main + 10 * np.sqrt(self.cov_main) + self.mean_main / 10,
self.mean_main / 10),
color='green',
density=True)
plt.legend(bbox_to_anchor=(1,1), loc='upper right', borderaxespad=1)
plt.subplot(1,2,2)
plt.grid(True)
else:
plt.grid(True)
gmm_x = np.linspace(0, self.mean_main+10*np.sqrt(self.cov_main), 5000)
if self.mix_model is not None:
# RNA case. 0 -> bg and 1 -> target
mix_y = self.mix_model[0][0] * st.norm(self.mix_model[1][0], self.mix_model[2][0]).pdf(gmm_x) + \
self.mix_model[0][1] * st.lognorm.pdf(gmm_x, self.mix_model[2][1], loc=0, scale=np.exp(self.mix_model[1][1]))
plt.plot(gmm_x, mix_y, label="Fitted by Lognormal and gaussian mixture model")
plt.xlim(0, self.mean_main+10*np.sqrt(self.cov_main))
plt.legend(bbox_to_anchor=(1,1), loc='upper right', borderaxespad=1)
elif self.model is None:
plt.gcf().text(0.30,0.5,"Caution: coverage estimation was skipped due to insufficient amount of data.", backgroundcolor='yellow')
else:
gmm_y = np.exp(self.model.score_samples(gmm_x.reshape(-1,1)))
plt.plot(gmm_x, gmm_y, label="Fitted by Gaussian mixture model")
plt.xlim(0, self.mean_main+10*np.sqrt(self.cov_main))
plt.legend(bbox_to_anchor=(1,1), loc='upper right', borderaxespad=1)
#plt.hist((self.df[LqCoverage.N_MBASE_COLUMN] / self.df[LqCoverage.QLENGTH_COLUMN]),
# alpha=0.2,
# bins=np.arange(0,
# self.mean_main + 10 * np.sqrt(self.cov_main) + self.mean_main / 10,
# self.mean_main / 10),
# color='green',
# normed=True)
plt.hist(self.df[LqCoverage.COVERAGE_COLUMN],
alpha=0.2,
bins=np.arange(0,
self.mean_main + 10 * np.sqrt(self.cov_main) + self.mean_main / 10,
self.mean_main / 10),
color='green',
density=True)
plt.xlabel('Per read coverage')
plt.ylabel('Probability density')
ymin, ymax = plt.gca().get_ylim()
xmin, xmax = plt.gca().get_xlim()
if fp:
plt.savefig(fp, bbox_inches="tight")
else:
plt.show()
plt.close()
def calc_xome_size(self, throughput):
m_size = -1
if self.no_coverage:
return "N/A"
elif self.isTranscript:
m_size = int((throughput * (1.0 - self.unmapped_frac_med)) / self.mode_logn_main)
elif self.low_coverage:
m_size = int((throughput * (1.0 - self.unmapped_frac_med)) / self.mode_logn_main)
else:
# gmm
m_size = int((throughput * (1.0 - self.unmapped_frac_med)) / self.mean_main)
if self.unmapped_frac_med >= LqCoverage.UNMAPPED_FRACTION_THRESHOLD: #or (self.low_coverage and not self.isTranscript):
# poission est + empirical correction
_s1 = throughput * LqCoverage.COV_CORRECTION * (1 - LqCoverage.UNMAPPED_FRACTION_PARAM_MIN) / self.min_lambda
_s2 = throughput * LqCoverage.COV_CORRECTION * (1 - LqCoverage.UNMAPPED_FRACTION_PARAM_MAX) / self.max_lambda
return "%d (e = %.1f%%), %d (e = 20%%), %d (e = 5%%)" % (m_size, self.unmapped_frac_med*100, _s2, _s1)
else:
return "%d (e = %.1f%%)" % (m_size, self.unmapped_frac_med*100)
def plot_unmapped_frac_terminal(self, fp=None, *, adp5_pos=None, adp3_pos=None, x_max=145):
plt.figure(figsize=(12,5))
ax1 = plt.subplot(1,2,1)
t5l, t3l, il = self.__region_analysis(3, 1)
logger.info("Coordinates of coverage analysis were parsed.")
plt.axes(ax1)
plt.hist(t5l, alpha=0.2, bins=np.arange(0, x_max, 5), color='green')
plt.xlim(0,x_max)
plt.xlabel('Distance from 5\' terminal')
plt.ylabel('Frequency')
ymin5, ymax5 = plt.gca().get_ylim()
ax2 = plt.subplot(1,2,2)
plt.axes(ax2)
plt.hist(t3l, alpha=0.2, bins=np.arange(0, x_max, 5), color='orange')
plt.xlim(x_max, 0)
plt.xlabel('Distance from 3\' terminal')
plt.ylabel('Frequency')
ymin3, ymax3 = plt.gca().get_ylim()
if ymax5 > ymax3:
ax2.set_ylim(0, ymax5)
ymax = ymax5
else:
ax1.set_ylim(0, ymax3)
ymax = ymax3
if adp5_pos:
#adp5_pos -> 45 for pb, 61 for 1d, and 120 for 1d2.
ax1.axvline(x=adp5_pos, linestyle='dashed', linewidth=2, color='red', alpha=0.8) # pacbio
if adp5_pos > 90:
ax1.text(adp5_pos, ymax*0.85, r'Length of the adapter', horizontalalignment='right')
else:
ax1.text(adp5_pos, ymax*0.85, r'Length of the adapter', horizontalalignment='left')
if adp3_pos:
#adp3_pos -> 45 for pb, 22 for 1d, and 86 for 1d2.
ax2.axvline(x=adp3_pos, linestyle='dashed', linewidth=2, color='red', alpha=0.8) # pacbio
if adp3_pos > 90:
ax2.text(adp3_pos, ymax*0.85, r'Length of the adapter', horizontalalignment='left')
else:
ax2.text(adp3_pos, ymax*0.85, r'Length of the adapter', horizontalalignment='right')
if fp:
plt.savefig(fp, bbox_inches="tight")
else:
plt.show()
plt.close()
def plot_qscore_dist(self, fp=None, *, platform='ont'):
if platform == 'ont':
mid_threshold = 7 # ont
else:
#id_threshold = 8 # obsolete
mid_threshold = 7 # we can use the same criterion for pb too.
plt.grid(True)
plt.boxplot([self.df[LqCoverage.QV_COLUMN].values[np.where(self.df[LqCoverage.COVERAGE_COLUMN] == 0.0)],
self.df[LqCoverage.QV_COLUMN].values[np.where(self.df[LqCoverage.COVERAGE_COLUMN] != 0.0)]])
plt.xticks([1,2], ["Non-sense reads", "Normal reads"])
ymin, ymax = plt.gca().get_ylim()
#plt.axhspan(0, 5, facecolor='red', alpha=0.1)
#plt.axhspan(5, mid_threshold, facecolor='yellow', alpha=0.1)
plt.axhspan(0, mid_threshold, facecolor='red', alpha=0.1)
plt.axhspan(mid_threshold, ymax, facecolor='green', alpha=0.1)
#plt.boxplot(df[5].values[np.where(df[4] == 0.0)])
plt.ylim(0, ymax)
plt.ylabel('Averaged QV')
if fp:
plt.savefig(fp, bbox_inches="tight")
else:
plt.show()
plt.close()
def plot_length_vs_coverage(self, fp=None, *, interval=3000.0):
### read score after size binning.
subplot = self.__gen_boxplot_length_vs_coverage(interval)
bin_size = self.df.groupby('Binned read length').size()
boundary_reliable_bins = np.where(bin_size >= LqCoverage.LENGTH_BIN_THRESHOLD)[0]
xmin, xmax = plt.gca().get_xlim()
if boundary_reliable_bins.size > 0:
dmin = boundary_reliable_bins.min()
dmax = boundary_reliable_bins.max()
if dmax < xmax:
plt.axvspan(boundary_reliable_bins.max()+1.5, xmax+1, facecolor='gray', alpha=0.1)
if dmin > xmin:
plt.axvspan(xmin-1, dmin+1.5, facecolor='gray', alpha=0.1)
else:
plt.axvspan(xmin-1,xmax+1,facecolor='gray', alpha=0.1)
plt.xlim(xmin, xmax)
#plt.axhline(y=self.mean_main, linestyle='dashed', linewidth=2, color='red', alpha=0.2) # a bit misleading in case skewed dist
plt.title("Read coverage over different length reads")
plt.xticks(np.arange(xmax+1), [int(i) for i in np.arange(xmax+1)*interval])
plt.ylim(0, self.mean_main + 20*np.sqrt(self.cov_main))
plt.ylabel("per-read coverage")
plt.suptitle("")
if not self.min_lambda and not self.max_lambda and self.mix_model is None:
# 3 sigma
yc = self.get_mean() - 3*self.get_sd()
plt.axhline(y=yc, color="royalblue", alpha=0.4, lw=1)
plt.text(0, yc, r'3$\sigma$', color="royalblue")
yc = self.get_mean() + 3*self.get_sd()
plt.axhline(y=yc, color="royalblue", alpha=0.4, lw=1)
plt.text(0, yc, r'3$\sigma$', color="royalblue")
self.__check_outlier_coverage(interval)
#plt.savefig('Box_plot_quality.png')
if fp:
plt.savefig(fp, bbox_inches="tight", transparent=True)
else:
plt.show()
plt.close()
#interval = est_confidence_interval_params(df, 2, nbs=1000)
#print(interval)
#print(st.norm.ppf(0.2, loc=interval[0][1], scale=interval[1][0]))
def __gen_boxplot_length_vs_coverage(self, interval):
self.df.loc[self.df[LqCoverage.QLENGTH_COLUMN] >= 3000, 'MERGED_COVERAGE'] = self.df[LqCoverage.COVERAGE_COLUMN]
self.df.loc[self.df[LqCoverage.QLENGTH_COLUMN] < 3000, 'MERGED_COVERAGE'] = self.df[LqCoverage.T1_COVERAGE_COLUMN]
self.df['Binned read length'] = np.floor(self.df[LqCoverage.QLENGTH_COLUMN].values/interval)
#return self.df.boxplot(column=LqCoverage.COVERAGE_COLUMN, by='Binned read length', sym='+', rot=90, figsize=(2*int(max(self.df['Binned read length'])/5+0.5), 4.8))
#return self.df.boxplot(column='MERGED_COVERAGE', by='Binned read length', sym='+', rot=90, figsize=(2*int(max(self.df['Binned read length'])/5+0.5), 4.8))
if max(self.df['Binned read length']) < 5:
return self.df.boxplot(column='MERGED_COVERAGE', by='Binned read length', sym='+', rot=90)
else:
return self.df.boxplot(column='MERGED_COVERAGE', by='Binned read length', sym='+', rot=90, figsize=(2*int(max(self.df['Binned read length'])/5+0.5), 4.8))
def __check_outlier_coverage(self, interval):
stats = self.df.groupby('Binned read length')[LqCoverage.COVERAGE_COLUMN].agg([np.median, np.size])
meds = stats['median'].iloc[np.where(stats['size']>=LqCoverage.LENGTH_BIN_THRESHOLD)[0]]
three_sigma = np.where((meds > self.get_mean() + 3*self.get_sd()) | (meds <= self.get_mean() - 3*self.get_sd()))
if len(three_sigma[0]) > 0:
#error case
#self.errors.append(('Coverage error', 'Coverage is not homogenous over the read length.'))
# change this to warnings
self.warnings.append(('Coverage warning', 'Coverage might not be homogenous over the read length.'))
#else:
# two_sigma = np.where((meds > self.get_mean() + 2*self.get_sd()) | (meds <= self.get_mean() - 2*self.get_sd()))
# if len(two_sigma[0]):
# self.warnings.append(('Coverage warning', 'Coverage might not be homogenous over the read length.'))
# est_coverage_dist sometimes return weird mu, maybe due to local maxima, so
# below method is an ugly working solution.
# nbs : the number of bootstrap iteration
# k_i : initial value for the parameter for the number of component in GMM.
# k_max : maximum value for the parameter for the number of component in GMM.
def __est_confidence_interval_params(self, nbs=100, k_i=2, k_max=2):
_mus = np.zeros(nbs)
_n = np.zeros(nbs)
_sigmas = np.zeros(nbs)
i = 0
while(i < nbs):
(n, mu, sigma_sq) = __est_coverage_dist(k_i=k_i, k_max=k_max)
_n[i] = n
_mus[i] = mu
_sigmas[i] = np.sqrt(sigma_sq)
i += 1
return (st.t.interval(0.99, len(_mus)-1, loc=np.mean(_mus), scale=st.sem(_mus)),
st.t.interval(0.99, len(_sigmas)-1, loc=np.mean(_sigmas), scale=st.sem(_sigmas)))
def __est_coverage_dist_lognorm_norm(self):
#a little bit buggy
th_per = self.df[LqCoverage.COVERAGE_COLUMN].quantile(0.85)
if th_per == 0.0:
th_per = self.df[LqCoverage.COVERAGE_COLUMN].quantile(1.0)
nonzeros = self.df[LqCoverage.COVERAGE_COLUMN].values[self.df[LqCoverage.COVERAGE_COLUMN].to_numpy().nonzero()]
# we should not assume k=2 model, but tentatively work with this.
i_bg = 0 if self.main_comp_index == 1 else 1
i_m = 1 if self.main_comp_index == 1 else 0
weights, distributions, ll = mixem.em(nonzeros[nonzeros < th_per], [
mixem.distribution.NormalDistribution(self.model.means_[i_bg][0], np.sqrt(self.model.covariances_[i_bg][0][0])), # for noise
mixem.distribution.LogNormalDistribution(np.log(self.model.means_[i_m][0]), 1) # for true
], max_iterations=500)
self.mix_model = (weights, [d.get_mu() for d in distributions], [d.get_sigma() for d in distributions])
# k_i : initial value for the parameter for the number of component in GMM.
# k_max : maximum value for the parameter for the number of component in GMM.
def __est_coverage_dist_gmm(self, k_i=2, k_max=2):
_c_i = -1 # index for coverage component. Assume there is only one such a component.
_b_i = [] # index for background component
for k in range(k_i, k_max+1):
_c_i = -1 # init
_b_i = [] # init
#a little bit buggy
th_per = self.df[LqCoverage.COVERAGE_COLUMN].quantile(0.85)
if th_per == 0.0:
th_per = self.df[LqCoverage.COVERAGE_COLUMN].quantile(1.0)
nonzeros = self.df[LqCoverage.COVERAGE_COLUMN].values[self.df[LqCoverage.COVERAGE_COLUMN].to_numpy().nonzero()]
if nonzeros[nonzeros < th_per].size == 0:
# literally no data case!
# give some dummy
return (None, 1, 10, 0)
else:
m_f = mixture.GaussianMixture(n_components=k).fit(nonzeros[nonzeros < th_per].reshape(-1,1),1)
logger.debug(m_f)
order = m_f.weights_/[e[0] for inner in m_f.covariances_ for e in inner] # w/\sigma
ratio = np.array([e for i in m_f.means_ for e in i])/np.array([e[0] for i in m_f.covariances_ for e in i])
#weird_components = [i for i, v in enumerate(ratio) if v > 1] # sqrt(mu) > sigma
logger.info("The order of componens %s " % " ".join([str(v) for v in order]) )
logger.info("Means of components: %s k=%d" % (" ".join([str(e) for i in m_f.means_ for e in i]), k))
logger.info("Covariances of components: %s k=%d" % (" ".join([str(e[0]) for inner in m_f.covariances_ for e in inner]), k))
_max = -1*np.inf
for i,v in enumerate(order):
#if i in weird_components:
# continue
if _max < v:
_max = v
_c_i = i
for i in range(0, len(order)):
#if i in weird_components or i == _c_i:
if i == _c_i:
continue
else:
_b_i.append(i)
if _c_i == -1 or not _b_i:
continue
else:
return (m_f, m_f.means_[_c_i][0], m_f.covariances_[_c_i][0][0], _c_i)
#return (k, m_f, m_f.means_[_c_i][0], m_f.covariances_[_c_i][0][0])
return (m_f, m_f.means_[_c_i][0], m_f.covariances_[_c_i][0][0], _c_i)
def __region_analysis(self, column_i_coords, column_i_ql, threshold=50):
coi = column_i_coords
qli = column_i_ql
trim_5 = []
trim_3 = []
intrnl = []
for i in self.df.index.tolist():
str = self.df[coi][i]
if str == '0':
continue
ql = self.df[qli][i]
regs = [ (int(reg.split('-')[0]), int(reg.split('-')[1])) for reg in str.split(',')]
s = e = None
if(len(regs) > 1):
sr = sorted(regs, key=itemgetter(0,1))
s = sr[0][0]
e = sr[-1][1]
for k in range(0, len(regs)-1):
intrnl.append(regs[k+1][0] - regs[k][1])
elif(len(regs) == 1):
(s, e) = regs[0]
else:
logger.warning("The number of region is weird." )
if s != None and e != None:
t3 = int(ql) - int(e)
trim_5.append(s)
trim_3.append(t3)
return(trim_5, trim_3, intrnl)
# test
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
prog='lq_coverage.py',
description='a module for LongQC. gestimates coverage and generates plots and some stats from tables.',
add_help=True,
)
parser.add_argument('input', \
help='path for coverage_out.txt made by minimap2-coverage.', type=str)
parser.add_argument('--output', dest='outf', \
help='output path where plots are saved.', type=str)
parser.add_argument('--control', dest='conf',\
help='(optional) path for spikein_out.txt.', type=str)
args = parser.parse_args()
if args.conf:
conf = args.conf
else:
conf = None
inf = args.input
outf = args.outf
lc = LqCoverage(inf, isTranscript=False, control_filtering=conf)
if lc.mode_logn_main:
print("Mode of LogN mix: %.3f" % lc.mode_logn_main)
print("Mean of GMM: %.3f" % lc.mean_main)
else:
print("Mean of GMM: %.3f" % lc.mean_main)
plt.rcParams['figure.figsize'] = (7, 7)
plt.rcParams['pdf.fonttype'] = 42
plt.rcParams['ps.fonttype'] = 42
# comment out a plot if needed. not multiple plots in a single file.
#lc.plot_qscore_dist(outf)
lc.plot_coverage_dist(outf)
#lc.plot_length_vs_coverage(outf)
#lc.plot_unmapped_frac_terminal(outf)
# logs of stats.
print("%% non-sense reads: %.3f" % lc.get_unmapped_med_frac())
print("%% control reads: %.3f" % lc.get_control_frac())
print("Warnings: ", lc.warnings)
print("Errors: ", lc.errors)
"""
# internal break. experimental.
plt.hist(il, alpha=0.2, color='blue')
print(len(il))
plt.plot(il, ([-0.5]*len(il)) + 0.1*np.random.random(len(il)), '+k')
plt.show()
"""