We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
alphalens.tears.create_full_tear_sheet(factor_data)
Cell In[20], line 1 ----> 1 alphalens.tears.create_full_tear_sheet(factor_data) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/plotting.py:46, in customize.<locals>.call_w_context(*args, **kwargs) 44 with plotting_context(), axes_style(), color_palette: 45 sns.despine(left=True) ---> 46 return func(*args, **kwargs) 47 else: 48 return func(*args, **kwargs) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/tears.py:501, in create_full_tear_sheet(factor_data, long_short, group_neutral, by_group) 497 plotting.plot_quantile_statistics_table(factor_data) 498 create_returns_tear_sheet( 499 factor_data, long_short, group_neutral, by_group, set_context=False 500 ) --> 501 create_information_tear_sheet( 502 factor_data, group_neutral, by_group, set_context=False 503 ) 504 create_turnover_tear_sheet(factor_data, set_context=False) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/plotting.py:48, in customize.<locals>.call_w_context(*args, **kwargs) 46 return func(*args, **kwargs) 47 else: ---> 48 return func(*args, **kwargs) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/tears.py:365, in create_information_tear_sheet(factor_data, group_neutral, by_group) 362 plotting.plot_ic_ts(ic, ax=ax_ic_ts) 364 ax_ic_hqq = [gf.next_cell() for _ in range(fr_cols * 2)] --> 365 plotting.plot_ic_hist(ic, ax=ax_ic_hqq[::2]) 366 plotting.plot_ic_qq(ic, ax=ax_ic_hqq[1::2]) 368 if not by_group: File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/alphalens/plotting.py:282, in plot_ic_hist(ic, ax) 279 ax = ax.flatten() 281 for a, (period_num, ic) in zip(ax, ic.items()): --> 282 sns.histplot(ic.replace(np.nan, 0.0), kde=True, ax=a) 283 a.set(title="%s Period IC" % period_num, xlabel="IC") 284 a.set_xlim([-1, 1]) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/distributions.py:1462, in histplot(data, x, y, hue, weights, stat, bins, binwidth, binrange, discrete, cumulative, common_bins, common_norm, multiple, element, fill, shrink, kde, kde_kws, line_kws, thresh, pthresh, pmax, cbar, cbar_ax, cbar_kws, palette, hue_order, hue_norm, color, log_scale, legend, ax, **kwargs) 1451 estimate_kws = dict( 1452 stat=stat, 1453 bins=bins, (...) 1457 cumulative=cumulative, 1458 ) 1460 if p.univariate: -> 1462 p.plot_univariate_histogram( 1463 multiple=multiple, 1464 element=element, 1465 fill=fill, 1466 shrink=shrink, 1467 common_norm=common_norm, 1468 common_bins=common_bins, 1469 kde=kde, 1470 kde_kws=kde_kws, 1471 color=color, 1472 legend=legend, 1473 estimate_kws=estimate_kws, 1474 line_kws=line_kws, 1475 **kwargs, 1476 ) 1478 else: 1480 p.plot_bivariate_histogram( 1481 common_bins=common_bins, 1482 common_norm=common_norm, (...) 1492 **kwargs, 1493 ) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/distributions.py:418, in _DistributionPlotter.plot_univariate_histogram(self, multiple, element, fill, common_norm, common_bins, shrink, kde, kde_kws, color, legend, line_kws, estimate_kws, **plot_kws) 416 kde_kws["cumulative"] = estimate_kws["cumulative"] 417 log_scale = self._log_scaled(self.data_variable) --> 418 densities = self._compute_univariate_density( 419 self.data_variable, 420 common_norm, 421 common_bins, 422 kde_kws, 423 log_scale, 424 warn_singular=False, 425 ) 427 # First pass through the data to compute the histograms 428 for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True): 429 430 # Prepare the relevant data File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/distributions.py:303, in _DistributionPlotter._compute_univariate_density(self, data_variable, common_norm, common_grid, estimate_kws, log_scale, warn_singular) 299 common_norm = False 301 densities = {} --> 303 for sub_vars, sub_data in self.iter_data("hue", from_comp_data=True): 304 305 # Extract the data points from this sub set and remove nulls 306 sub_data = sub_data.dropna() 307 observations = sub_data[data_variable] File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/_core.py:983, in VectorPlotter.iter_data(self, grouping_vars, reverse, from_comp_data) 978 grouping_vars = [ 979 var for var in grouping_vars if var in self.variables 980 ] 982 if from_comp_data: --> 983 data = self.comp_data 984 else: 985 data = self.plot_data File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/seaborn/_core.py:1054, in VectorPlotter.comp_data(self) 1050 axis = getattr(ax, f"{var}axis") 1052 # Use the converter assigned to the axis to get a float representation 1053 # of the data, passing np.nan or pd.NA through (pd.NA becomes np.nan) -> 1054 with pd.option_context('mode.use_inf_as_null', True): 1055 orig = self.plot_data[var].dropna() 1056 comp_col = pd.Series(index=orig.index, dtype=float, name=var) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:441, in option_context.__enter__(self) 440 def __enter__(self) -> None: --> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops] 443 for pat, val in self.ops: 444 _set_option(pat, val, silent=True) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:441, in <listcomp>(.0) 440 def __enter__(self) -> None: --> 441 self.undo = [(pat, _get_option(pat, silent=True)) for pat, val in self.ops] 443 for pat, val in self.ops: 444 _set_option(pat, val, silent=True) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:135, in _get_option(pat, silent) 134 def _get_option(pat: str, silent: bool = False) -> Any: --> 135 key = _get_single_key(pat, silent) 137 # walk the nested dict 138 root, k = _get_root(key) File ~/opt/miniconda3/envs/vnpy/lib/python3.10/site-packages/pandas/_config/config.py:121, in _get_single_key(pat, silent) 119 if not silent: 120 _warn_if_deprecated(pat) --> 121 raise OptionError(f"No such keys(s): {repr(pat)}") 122 if len(keys) > 1: 123 raise OptionError("Pattern matched multiple keys") OptionError: No such keys(s): 'mode.use_inf_as_null'
Please provide any additional information below:
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Problem Description
Please provide any additional information below:
Versions
The text was updated successfully, but these errors were encountered: