From b8bd2e4dc633ee8eb41270c8be14ed963063381d Mon Sep 17 00:00:00 2001 From: Janis Pagel Date: Thu, 25 Jan 2024 13:38:43 +0100 Subject: [PATCH] Change eval method --- platypus_entail.ipynb | 90 ++++++++++++++++++++++++++++++++++++++----- 1 file changed, 80 insertions(+), 10 deletions(-) diff --git a/platypus_entail.ipynb b/platypus_entail.ipynb index 866b21a..07304c9 100644 --- a/platypus_entail.ipynb +++ b/platypus_entail.ipynb @@ -67,7 +67,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2023-12-12 16:30:36.733817: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", + "2024-01-25 12:24:38.657140: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n" ] } @@ -282,7 +282,77 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "89530cf06d934e9c932a4853fd12f3d8", + "model_id": "dbd0bcc4d9aa44fda86e1a70ec61dfca", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading (…)fetensors.index.json: 0%| | 0.00/35.1k [00:00\n", " \n", " 0\n", - " 0.304688\n", - " 0.5\n", - " 0.219101\n", + " 0.267029\n", + " 0.438202\n", + " 0.192021\n", " 0.438202\n", " \n", " \n", @@ -689,8 +759,8 @@ "" ], "text/plain": [ - " F1 Recall Precision Accuracy\n", - "0 0.304688 0.5 0.219101 0.438202" + " F1 Recall Precision Accuracy\n", + "0 0.267029 0.438202 0.192021 0.438202" ] }, "execution_count": 25, @@ -699,9 +769,9 @@ } ], "source": [ - "pd.DataFrame(list(zip([f1_score(ground_truth, predictions, average=\"macro\")],\n", - " [recall_score(ground_truth, predictions, average=\"macro\")],\n", - " [precision_score(ground_truth, predictions, average=\"macro\")],\n", + "pd.DataFrame(list(zip([f1_score(ground_truth, predictions, average=\"weighted\")],\n", + " [recall_score(ground_truth, predictions, average=\"weighted\")],\n", + " [precision_score(ground_truth, predictions, average=\"weighted\")],\n", " [accuracy_score(ground_truth, predictions,)])),\n", " columns = [\"F1\", \"Recall\", \"Precision\", \"Accuracy\"])" ]