-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_EM_ednil_hierarchical_consistent_stochastic.py
252 lines (207 loc) · 11.8 KB
/
main_EM_ednil_hierarchical_consistent_stochastic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import os
from datetime import datetime
from drugood.models import build_backbone
import torch
from drugood.datasets import build_dataset
from mmcv import Config
from ogb.graphproppred import Evaluator
from torch_geometric.data import DataLoader
from datasets.drugood_dataset import DrugOOD
from models.EM_models import MainModel, DomainHierarchyClassifier
from models.EM_Trainer_hierarchical import EM_EDNIL_Trainer_EI_hier, EM_EDNIL_Trainer_IL_hier
from utils.logger import Logger
from utils.util import args_print, set_seed
import pandas as pd
import wandb
def build_models_from_cfg(args, cfg, device, num_domains):
main_model = MainModel(args, num_class=cfg.num_class, input_dim=39).to(device)
domain_classifier = DomainHierarchyClassifier(args, num_task=1, num_domain=num_domains, num_class=cfg.num_class).to(device)
return main_model, domain_classifier
def return_configs(args):
cfg = Config.fromfile(os.path.join("configs", "ednil", args.dataset + ".py"))
cfg.data.samples_per_gpu = args.batch_size
cfg.data.workers_per_gpu = args.num_workers
cfg.emb_dim = args.emb_dim
cfg.decomp_dropout = args.dropout
cfg.model_dropout = args.dropout
cfg.model_layers = args.IL_num_layers
cfg.decomp_layers = args.EI_num_layers
cfg.decomp_model.node.num_layer = args.EI_num_layers
cfg.model.classifier.num_layer = cfg.model.domain.num_layer = args.IL_num_layers
cfg.decomp_model.node.emb_dim = cfg.model.classifier.emb_dim = cfg.model.domain.emb_dim = args.emb_dim
cfg.decomp_model.node.drop_ratio = cfg.model.classifier.drop_ratio = cfg.model.domain.drop_ratio = args.dropout
return cfg
def main():
parser = argparse.ArgumentParser(description='Causality Inspired Invariant Graph LeArning')
parser.add_argument('--wbproject_name', default='tuning', type=str, help='wandb project name')
parser.add_argument('--device', default=1, type=int, help='cuda device')
parser.add_argument('--root', default='./data', type=str, help='directory for datasets.')
parser.add_argument('--dataset', default='drugood_lbap_core_ic50_assay', type=str)
# training config
parser.add_argument('--batch_size', default=128, type=int, help='batch size')
parser.add_argument('--EI_lr', default=1e-3, type=float, help='learning rate for the EI')
parser.add_argument('--IL_lr', default=1e-4, type=float, help='learning rate for the IL')
parser.add_argument('--seed', nargs='?', default='[1,2,3,4,5]', help='random seed')
parser.add_argument('--pretrain', default=20, type=int, help='pretrain epoch before early stopping')
# model config
parser.add_argument('--emb_dim', default=128, type=int)
parser.add_argument('--r', default=0.8, type=float, help='selected ratio')
parser.add_argument('--model', default='gin', type=str)
parser.add_argument('--pooling', default='sum', type=str)
parser.add_argument('--EI_num_layers', default=1, type=int)
parser.add_argument('--IL_num_layers', default=4, type=int)
parser.add_argument('--alpha', default=1, type=float, help='envConWeight')
parser.add_argument('--beta', default=1, type=float, help='labelConWeight')
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--early_stopping', default=20, type=int) # 20, 5
parser.add_argument('--dropout', default=0.5, type=float)
parser.add_argument('--virtual_node', action='store_true')
parser.add_argument('--eval_metric', default='auc', type=str, help='specify a particular eval metric, e.g., mat for MatthewsCoef')
# Invariant Learning baselines config
parser.add_argument('--num_envs', default=-1, type=int, help='num of envs need to be partitioned')
parser.add_argument('--irm_p', default=0.01, type=float, help='penalty weight')
parser.add_argument('--irm_opt', default='ednil_EI_hier_assay', type=str, help='algorithms to use')
# EDNIL config
parser.add_argument('--EI_epochs', default=10, type=int) # epochs for EI
parser.add_argument('--IL_epochs', default=400, type=int) # epochs for IL
parser.add_argument('--temperature', default=0.2, type=float) # temperature for ednil
parser.add_argument('--envw_thres', default=2, type=float) # threshold for env weight
parser.add_argument('--penalty_w', default=-1, type=float) # penalty weight for env weight
parser.add_argument('--l2_w', default=-1, type=float) # l2 weight for env weight
parser.add_argument('--num_hierarchy', default=3, type=int) # number of hierarchy
parser.add_argument('--ei_last_hierarchy', default=2, type=int) # number of last hierarchy for EI
parser.add_argument('--il_last_hierarchy', action='store_true', default=True) # whether to use only last hiearachy in IL
parser.add_argument('--il_cls', default='linear', type=str) # classification type in IL
# misc
parser.add_argument('--no_tqdm', action='store_true')
parser.add_argument('--commit', default='', type=str, help='experiment name')
parser.add_argument('--save_model', action='store_true') # save pred to ./pred if not empty
# args = parser.parse_args()
args, unknown = parser.parse_known_args()
# erm_model = None # used to obtain pesudo labels for CNC sampling in contrastive loss
args.seed = eval(args.seed)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
### automatic dataloading and splitting
if args.dataset.lower().startswith('drugood'):
# drugood_lbap_core_ic50_assay.json
cfg = return_configs(args)
root = os.path.join(args.root, "DrugOOD")
train_dataset = DrugOOD(root=root, dataset=build_dataset(cfg.data.train), name=args.dataset, mode="train")
val_dataset = DrugOOD(root=root, dataset=build_dataset(cfg.data.ood_val), name=args.dataset, mode="ood_val")
test_dataset = DrugOOD(root=root, dataset=build_dataset(cfg.data.ood_test), name=args.dataset, mode="ood_test")
if args.eval_metric == 'auc':
args.evaluator = Evaluator('ogbg-molhiv')
args.eval_metric = 'rocauc'
else:
args.evaluator = Evaluator('ogbg-ppa')
args.edge_dim=10
args.input_dim=39
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
valid_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
# log
datetime_now = datetime.now().strftime("%Y%m%d-%H%M%S")
experiment_name = args.commit
if not os.path.exists(os.path.join('./logs', args.irm_opt)):
os.mkdir(os.path.join('./logs', args.irm_opt))
exp_dir = os.path.join('./logs', args.irm_opt, experiment_name)
if not os.path.exists(exp_dir):
os.mkdir(exp_dir)
logger = Logger.init_logger(filename=exp_dir + f'/log_{datetime_now[4::]}.log')
args_print(args, logger)
logger.info(f"# Train: {len(train_loader.dataset)} #Val: {len(valid_loader.dataset)} #Test: {len(test_loader.dataset)} ")
best_weights = None
# generate environment partitions ==> predefined environment!
if args.num_envs == -1:
env_idx = []
for graph in train_loader.dataset:
env_idx.append(graph.group)
env_idx = torch.cat(env_idx, dim=0)
num_envs = len(set(env_idx.tolist()))
print(f"num of envs: {num_envs}")
num_envs = [num_envs]
else:
num_envs = [args.num_envs]
if 'hier' in args.irm_opt:
print(f'[INFO] Using the hierarchical model...')
if args.num_hierarchy > 2:
for i in range(args.num_hierarchy-2):
num_envs.append(num_envs[-1]//2)
num_envs.append(args.ei_last_hierarchy)
elif args.num_hierarchy == 2:
num_envs.append(args.ei_last_hierarchy)
elif args.num_hierarchy == 1:
num_envs = num_envs
print(f"num of envs: {num_envs}")
def make_log(args, seed):
log_dir = os.path.join('wandb_log', args.dataset, args.irm_opt)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
fname = args.commit + '_seed_' + str(seed) + '.json'
return log_dir, fname
log_test_perf = []
for seed in args.seed:
log_dir, log_name = make_log(args, seed)
args.seed_i = seed
wandb.init(config=args,
project=args.wbproject_name,
name=log_name,
dir=log_dir,
reinit=True)
# else:
# wandb = None
set_seed(seed)
# models and optimizers
il_model, ei_domain = build_models_from_cfg(args, cfg, device, num_envs)
il_model_optimizer = torch.optim.Adam(list(il_model.parameters()), lr=args.IL_lr)
ei_pre_optimizer = torch.optim.Adam(list(ei_domain.parameters()), lr=args.EI_lr)
ei_domain_optimizer = torch.optim.Adam(list(ei_domain.parameters()), lr=args.EI_lr)
if 'hier' in args.irm_opt:
ei_trainer = EM_EDNIL_Trainer_EI_hier(
num_classes=cfg.data.num_classes,
model=ei_domain,
pre_optimizer=ei_pre_optimizer,
optimizer=ei_domain_optimizer,
temperature=args.temperature,
device=device)
il_trainer = EM_EDNIL_Trainer_IL_hier(
num_classes=cfg.data.num_classes,
model=il_model,
optimizer=il_model_optimizer,
device=device,
args=args)
else:
print(f'[ERROR INFO] Not using the hierarchical model...')
env_model = None
if not os.path.exists(os.path.join(exp_dir, 'ei_hier_seed{}.pt'.format(seed))) and args.EI_epochs > 0:
print(f'[INFO] START training on assistant EI models')
best_ep, min_loss = ei_trainer.train_EI_hier_consistent(train_loader, args, wandb=wandb)
print('--best epoch: {}-- best ei_loss: {:.4f}'.format(best_ep, min_loss))
torch.save(ei_trainer.model.state_dict(), os.path.join(exp_dir, 'ei_hier_seed{}.pt'.format(seed)))
print(f'[INFO] Loading the pretrained EI model...')
ei_trainer.model.load_state_dict(torch.load(os.path.join(exp_dir, 'ei_hier_seed{}.pt'.format(seed))))
env_model = ei_trainer.model
env_model.eval()
print(f'[INFO] START training on main IL model')
best_test_perf, best_val_perf, best_epoch = il_trainer.train_IL_hier(train_loader, valid_loader, test_loader, args, env_model, wandb=wandb)
# torch.save(il_trainer.model.state_dict(), os.path.join(exp_dir, 'il_seed{}.pt'.format(seed)))
# print('[INFO] EVALUATING the main model...')
# test_perf = il_trainer.test(test_loader, args, env_model)
print('[INFO] Last: Test_perf: {:.4f} Val_perf:{:.4f} '.format(best_test_perf, best_val_perf))
logger.info("Best performance at Epoch: {}".format(best_epoch))
logger.info("+" * 50)
logger.info("Last: Test_perf: {:.4f} Val_perf:{:.4f} ".format(best_test_perf, best_val_perf))
logger.info("=" * 50)
log_test_perf.append(best_test_perf)
result = pd.DataFrame(log_test_perf).T
result.columns = [f'seed_{i}' for i in args.seed]
result['mean'] = result.mean(axis=1)
result['std'] = result.std(axis=1)
result.to_csv(os.path.join(exp_dir, 'result.csv'), sep='\t', index=False)
log_test_perf = torch.tensor(log_test_perf)
logger.info("Mean: {} Std: {}".format(torch.mean(log_test_perf), torch.std(log_test_perf)))
print("\n\n\n")
torch.cuda.empty_cache()
if __name__ == "__main__":
main()