This repository has been archived by the owner on Dec 7, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 376
/
Copy pathqcmatrixio.F
executable file
·1118 lines (1118 loc) · 32.2 KB
/
qcmatrixio.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
*Deck Open_Read
Subroutine Open_Read(Name,IU,LabFil,IVers,NLab,GVers,Title,NAtoms,
$ NBasis,NBsUse,ICharg,Multip,NE,Len12L,Len4L,IOpCl,ICGU)
Implicit None
C
C This file contains low-level routines to read and write matrix
C element files as Fortran unformatted file. All routines can
C be called from Fortran programs and are wrapped for use in
C Python programs, usually via the QCMatEl and QCOpMat
C modules/classes. The file format and contents of the header
C records are documented in unfdat.txt.
C
C Routines defined here, with Fortran and Python call sequences:
C
C Call Open_Read(Name,IU,LabFil,IVers,NLab,GVers,Title,NAtoms,
C $ NBasis,NBsUse,ICharg,Multip,NE,Len12L,Len4L,IOpCl,ICGU)
C (iu,labfil,ivers,nlab,gvers,title,natoms,nbasis,nbsuse,icharg,
C multip,ne,len12l,len4l,iopcl,icgu) = open_read(name)
C Open the named matrix-element file for reading, and return
C the listed scalars from the initial 2 header records. IU receives
C the Fortran unit number of the open file, or -1 if the open failed.
C
C Call Open_Write(Name,IU,LabFil,GVers,Title,NAtoms,NBasis,
C $ NBsUse,ICharg,Multip,NE,IOpCl,ICGU)
C iu = open_write(name,labfil,gvers,title,natoms,nbasis,nbsuse,
C icharg,multip,ne,iopcl,icgu)
C Open the named matrix-element file for writing and write the
C named scalars to the initial 2 header records. IU receives the
C Fortran unit number of the open file, or -1 if the open failed.
C
C Call Close_MatF(IU)
C close_matf (iu)
C Close the file open on Fortran unit IU.
C
C Ind = Lind2C(Check,N1,N2,ASym,I,J,Sign)
C Ind = Lind2(Check,N1,N2,ASym,I,J,Sign)
C Ind = Lind3C(Check,N1,N2,N3,ASym,I,J,K,Sign)
C Ind = Lind3(Check,N1,N2,N3,ASym,I,J,K,Sign)
C Ind = Lind4C(Check,N1,N2,N3,N4,ASym,I,J,K,L,Sign)
C Ind = Lind4(Check,N1,N2,N3,N4,ASym,I,J,K,L,Sign)
C Ind = Lind5C(Check,N1,N2,N3,N4,N5,ASym,I,J,K,L,M,Sign)
C Ind = Lind5(Check,N1,N2,N3,N4,N5,ASym,I,J,K,L,M,Sign)
C (ind,sign) = lind2c(check,n1,n2,ASym,i,j), etc.
C
C Return the 0-based index into a linear array given 2, 3, 4, or 5
C indices and dimensions. Check is True to check for indices in
C range and return -1 if they are out of range; otherwise the
C indices are assumed to be valid. The C versions take c-style
C indices (0-based and rightmost dimension and index fastest
C running) while the others are Fortran-style (1-based and
C leftmost dimension and index fastest running). Sign is +/-1
C to indicate whether the upper or lower triangle was selected
C (i.e., whether to apply a sign flip for anti-symmetric/Hermetian
C matrices and/or take a complex conjugate.
C Note the all functions return a 0-based index.
C
C Call Rd_Head(IU,NLab,NAtoms,NBasis,IAn,IAtTyp,AtmChg,C,
C $ IBfAtm,IBfTyp,AtmWgt,NFC,NFV,ITran,IDum9,NShlAO,NPrmAO,NShlDB,
C $ NPrmDB,NBTot)
C (ian,iattyp,atmchg,c,ibfatm,ibftyp,atmwgt,nfc,nfv,itran,idum9,
C nshlao,nprmao,nshldb,nprmdb,nbtot) = rd_head(iu,nlab,natoms,nbasis)
C Read the remaining header records (3 to NLab) and return the named
C arrays.
C
C Call Rd_Labl(IU,IVers,CBuf,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5,ASym,
C $ NRI,EOF)
C (cbuf,ni,nr,ntot,lenbuf,n1,n2,n3,n4,n5,ASym,nri,eof) = rd_labl(iu,ivers)
C read the label record for an operator matrix.
C
C Call Rd_IBuf(IU,NI*NTot,NR*LenBuf,Arr)
C arr = rd_ibuf(iu,ni*ntot,ni*lenbuf)
C Call Rd_RBuf(IU,NR*NTot,NR*LenBuf,Arr)
C arr = rd_rbuf(iu,nr*ntot,nr*lenbuf)
C Call Rd_CBuf(IU,NR*NTot,NR*LenBuf,Arr)
C arr = rd_cbuf(iu,nr*ntot,nr*lenbuf)
C read an integer/real/complex array from the file given parameters
C from the header record.
C
C Call Rd_RInd(IU,NR,LR,NTot,LenBuf,LNZ,RArr)
C lnz,arr = rd_rind(iu,nr,lr,ntot,lenbuf)
C Read a real array stored with indices for non-zero elements.
C lnz receives the index (1-based) of the last non-zero element.
C
C Call Rd_Skip(IU,NTot,LenBuf)
C rd_skip(iu,ntot,lenbuf)
C Skip the data records for an object on the file having NTot
C elements stored with LenBuf per record.
C
C Call Rd_2E1(IU,LR,NTot,LenBuf,RArr)
C Call Rd_2EN(IU,NR,LR,LRNR,NTot,LenBuf,RArr)
C arr = rd_2e1(iu,lr,ntot,lenbuf)
C arr = rd_2en(iu,nr,lr,lrnr,ntot,lenbuf)
C Read and return an array of AO 2e integrals (really, a
C 4-dimensional array with quartets of indices and one
C value or NR values per index set). NTot is the number of non-zero
C values (from the header record for the object) and
C LR is the total number of elements (LenArr(-N,-N,-N,N,1), where
C N is the number of basis functions).
C
C Call Wr_Head(IU,NAtoms,NAt3,NBasis,IAn,IAtTyp,AtmChg,C,
C $ IBfAtm,IBfTyp,AtmWgt,NFC,NFV,ITran,IDum9,NShlAO,NPrmAO,NShlDB,
C $ NPrmDB,NBTot)
C wr_head(iu,natoms,nat3,nbasis,ian,iattyp,atmchg,c,ibfatm,ibftyp,
C atmwgt,nfc,nfv,itran,idum9,nshlao,nprmao,nshldb,nprmdb,nbtot)
C Write the header records (3 to NLab) to Fortran unit IU.
C
C The following low-level routines are not usually called directly,
C but are accessed via the routine Wr_L{IBuf,RBuf,CBuf,RInd} which
C are in qcmatrix.F for fortran and QCMatEl.py for Python.
C
C Call Wr_Labl(IU,CBuf,NI,NR,NTot,LenBfX,N1,N2,N3,N4,N5,ASym)
C Write the header record for one matrix to the file.
C
C Call Wr_IBuf(IU,NTot,LenBfX,Arr)
C Call Wr_RBuf(IU,NTot,LenBfX,Arr)
C Call Wr_CBuf(IU,NTot,LenBfX,Arr)
C Call Wr_RInd(IU,NR,LR,NTot,LenBfX,RArr)
C Call Wr_2E(IU,NTot,NR,N,LR,LenBfX,RArr)
C Write objects of the specified types to the file. LenBfX is
C derived from the general LenBuf based on the length of the
C items; this is normally handled by the Wr_Lxxxx routines.
C
C LVal = AOInts(CBuf)
C lval = aoints(cbuf)
C Return true if the operator identified by the string in CBuf
C is an AO 2e integral array (regular or Rafenetti).
C
C NTot = LenArr(N1,N2,N3,N4,N5)
C ntot = lenarr(n1,n2,n3,n4,n5)
C return the total number of index values of an array with
C the specified dimensions, accounting for possible
C lower-triangular indices. This does not include a
C possible multiple number of values per index (NI or NR in
C the record header, nelem in the object).
C
C NNZ = NumNZA(NR,NTot,X)
C nnz = numnza(x)
C return the number of non-zero elements of X(NTot,NR) (Fortran order).
C
C NNZ = NumNZR(NR,NTot,X)
C nnz = numnzr(x)
C return the number of non-zero elements of X(NR,NTot) (Fortran order).
C
C Open a Gaussian Matrix-element file and read header information.
C IU receives the Fortran unit number or -1 if the open failed.
C
Integer LStr, IUUse, Len12D, Len4D, IUSt, IUEnd
Parameter (Len12D=4,Len4D=4)
Parameter (LStr=64,IUSt=57,IUEnd=99)
C The latest f2py is now "improved" and is now too stupid to handle
C character string lengths given by parameters.
C Character*(*) Name, LabFil*(LStr), GVers*(LStr), Title*(LStr)
Character*(*) Name, LabFil*64, GVers*64, Title*64
Logical IsOpen
Integer IU,IVers,NLab,NAtoms,NBasis,NBsUse,ICharg,Multip,NE,
$ Len12L,Len4L,IOpCl,ICGU
cf2py intent(out) labfil,gvers,title,iu,ivers,nlab,natoms,nbasis,nbsuse
cf2py intent(out) icharg,multip,ne,len12l,len4l,iopcl,icgu
1000 Format(' This QCMatrixIO was compiled with Len12=',I1,' Len4=',I1,
$ ' but file has Len12=',I1,' Len4=',I1,'.')
C
LabFil = ' '
IVers = 0
NLab = 0
GVers = ' '
Title = ' '
NAtoms = 0
NBasis = 0
NBsUse = 0
ICharg = 0
Multip = 0
NE = 0
Len12L = 0
Len4L = 0
IOpCl = 0
ICGU = -1
Do 10 IUUse = IUSt, IUEnd
Inquire(Unit=IUUse,Opened=IsOpen)
If(.not.IsOpen) goto 20
10 Continue
IU = -1
Return
C
20 Open (Unit=IUUse,File=Name,Form='Unformatted',Status='Old',
$ Err=900)
IU = IUUse
Read(IU) LabFil(1:LStr), IVers, NLab, GVers(1:LStr)
If(IVers.eq.1) then
Read(IU) Title(1:LStr), NAtoms, NBasis, NBsUse, ICharg, Multip,
$ NE, Len12L, Len4L
else
Read(IU) Title(1:LStr), NAtoms, NBasis, NBsUse, ICharg, Multip,
$ NE, Len12L, Len4L, IOpCl, ICGU
endIf
If(Len4L.ne.Len4D.or.Len12L.ne.Len12D) then
Write(6,1000) Len12D, Len4D, Len12L, Len4L
Goto 900
endIf
Return
C
900 IU = -1
Return
End
*Deck Open_Write
Subroutine Open_Write(Name,IU,LabFil,GVers,Title,NAtoms,NBasis,
$ NBsUse,ICharg,Multip,NE,IOpCl,ICGU)
Implicit None
C
C Open a Gaussian Matrix-element file and write header information.
C IU receives the Fortran unit number or -1 if the open failed.
C
Integer LStr,IUUse,IVers,Len12L,Len4L,NLab,IUSt,IUEnd
Parameter (Len12L=4,Len4L=4)
Parameter (LStr=64,IUSt=57,IUEnd=99,IVers=2,NLab=11)
C The latest f2py is now "improved" and is now too stupid to handle
C character string lengths given by parameters.
C Character*(*) Name, LabFil, GVers, Title, LLabFil*(LStr),
C $ LGVers*(LStr), LTitle*(LStr)
Logical IsOpen
Character*(*) Name, LabFil, GVers, Title, LLabFil*64,
$ LGVers*64, LTitle*64
Integer IU,NAtoms,NBasis,NBsUse,ICharg,Multip,NE,IOpCl,ICGU
CF2PY Intent(Out) IU
C
Do 10 IUUse = IUSt, IUEnd
Inquire(Unit=IUUse,Opened=IsOpen)
If(.not.IsOpen) goto 20
10 Continue
IU = -1
Return
C
20 Open (Unit=IUUse,File=Name,Form='Unformatted',Status='Unknown',
$ Err=900)
IU = IUUse
LLabFil = LabFil
LGVers = GVers
LTitle = Title
Write(IU) LLabFil, IVers, NLab, LGVers
Write(IU) LTitle, NAtoms, NBasis, NBsUse, ICharg, Multip, NE,
$ Len12L, Len4L, IOpCl, ICGU
Return
C
900 IU = -1
Return
End
*Deck Close_MatF
Subroutine Close_MatF(IU)
Implicit None
C
C Close a matrix-element file.
C
Integer IU
C
Close (Unit=IU)
Return
End
*Deck AOInts
Logical Function AOInts(CBuf)
Implicit None
Character*(*) CBuf, Reg, Raf
Parameter (Reg='REGULAR 2E INTEGRALS',
$ Raf='RAFFENETTI 2E INTEGRALS')
C
AOInts = CBuf.eq.Reg.or.CBuf.eq.Raf
Return
End
*Deck LenArr
Integer Function LenArr(N1,N2,N3,N4,N5)
Implicit None
Integer N1,N2,N3,N4,N5,N1X,N2X,N3X,N4X,N5X,Abs,Lind5,Sign
C
N1X = N1
If(N1X.eq.0) N1X = 1
N2X = N2
If(N2X.eq.0) N2X = 1
N3X = N3
If(N3X.eq.0) N3X = 1
N4X = N4
If(N4X.eq.0) N4X = 1
N5X = N5
If(N5X.eq.0) N5X = 1
LenArr = Lind5(.False.,N1X,N2X,N3X,N4X,N5X,.False.,Abs(N1X),
$ Abs(N2X),Abs(N3X),Abs(N4X),Abs(N5X),Sign) + 1
Return
End
*Deck LInd2C
Integer Function LInd2C(Check,N1,N2,ASym,I,J,Sign)
Implicit None
C
C Linear or square indexing, I,J are 0-based, c order
C output is 0-based. Sign is +/-1.
C
Logical Check,ASym
Integer N1,N2,I,J,Lind2,Sign
CF2PY Intent (Out) Sign
C
Lind2C = Lind2(Check,N2,N1,ASym,J+1,I+1,Sign)
Return
End
*Deck LInd2
Integer Function Lind2(Check,N1,N2,ASym,I,J,Sign)
Implicit None
C
C Linear or square indexing, I,J are 1-based,
C output is 0-based. Sign is +/-1.
C
Logical Check,ASym
Integer N1,N2,I,J,Sign
CF2PY Intent (Out) Sign
C
Sign = 1
If(Check.and.(N2.le.0.or.N1.eq.0.or.(N1.lt.0.and.N1.ne.(-N2)).or.
$ I.lt.1.or.I.gt.Abs(N1).or.J.lt.1.or.J.gt.N2)) then
Lind2 = -1
Return
endIf
If(N1.lt.0) then
If(I.ge.J) then
Lind2 = (I*(I-1))/2 + J - 1
else
Lind2 = (J*(J-1))/2 + I - 1
Sign = -1
endIf
else
Lind2 = N1*(J-1) + I - 1
endIf
Return
End
*Deck Lind3C
Integer Function Lind3C(Check,N1,N2,N3,ASym,I,J,K,Sign)
Implicit None
C
C Linear or square indexing, I,J,K are 0-based, c order
C output is 0-based. Sign is +/-1.
C
Logical Check,ASym
Integer N1,N2,N3,I,J,K,Lind3,Sign
CF2PY Intent (Out) Sign
C
Lind3C = Lind3(Check,N3,N2,N1,ASym,K+1,J+1,I+1,Sign)
Return
End
*Deck LInd3
Integer Function Lind3(Check,N1,N2,N3,ASym,I,J,K,Sign)
Implicit None
C
C Linear or square indexing, I,J,K are 1-based,
C output is 0-based. Sign is +/-1.
C
Logical Check,ASym
Integer N1,N2,N3,I,J,K,I1,J1,K1,N12,IJ,LInd2,Sign
CF2PY Intent (Out) Sign
C
Sign = 1
If(Check.and.(N3.le.0.or.(N1*N2).eq.0.or.
$ (N1.lt.0.and.N1.ne.(-Abs(N2))).or.
$ (N2.lt.0.and.N2.ne.(-N3)).or.I.lt.1.or.I.gt.Abs(N1).or.
$ J.lt.1.or.J.gt.Abs(N2).or.K.lt.1.or.K.gt.N3)) then
Lind3 = -1
Return
endIf
I1 = I - 1
J1 = J - 1
K1 = K - 1
If(N1.gt.0) then
If(N2.gt.0) then
LInd3 = N1*(N2*K1+J1) + I1
else
Lind3 = N1*Lind2(.False.,N2,N3,ASym,J,K,Sign) + I1
endIf
else if(N2.gt.0) then
N12 = (N2*(N2+1))/2
If(I.ge.J) then
IJ = (I*I1)/2 + J1
else
IJ = (J*J1)/2 + I1
Sign = -1
endIf
Lind3 = N12*K1 + IJ
else
K1 = Max(I,J,K) - 1
I1 = Min(I,J,K) - 1
J1 = I + J + K - K1 - I1 - 3
LInd3 = I1 + (J1*(J1+1))/2 + (K1*(K1+1)*(K1+2))/6
endIf
Return
End
*Deck Lind4C
Integer Function Lind4C(Check,N1,N2,N3,N4,ASym,I,J,K,L,Sign)
Implicit None
C
C Linear or square indexing, I,J,K,L are 0-based, c order
C output is 0-based. Sign is +/-1.
C
Logical Check,ASym
Integer N1,N2,N3,N4,I,J,K,L,Lind4,Sign
CF2PY Intent (Out) Sign
C
Lind4C = Lind4(Check,N4,N3,N2,N1,ASym,L+1,K+1,J+1,I+1,Sign)
Return
End
*Deck LInd4
Integer Function Lind4(Check,N1,N2,N3,N4,ASym,I,J,K,L,Sign)
Implicit None
C
C Linear or square indexing, I,J,K,L are 1-based,
C output is 0-based. Sign is +/-1.
C
Logical Check,ASym
Integer N1,N2,N3,N4,I,J,K,L,I1,J1,K1,L1,ICase,Lind2,N23,
$ Lind3,N123,KL,IJ,IJK,JKL,JK,N12,Sign,SignIJ,SignKL
CF2PY Intent (Out) Sign
C
If(Check.and.(N4.le.0.or.(N1*N2*N3).eq.0.or.
$ (N1.lt.0.and.N1.ne.(-Abs(N2))).or.
$ (N2.lt.0.and.N2.ne.(-Abs(N3))).or.
$ (N3.lt.0.and.N3.ne.(-N4)).or.
$ I.lt.1.or.I.gt.Abs(N1).or.J.lt.1.or.J.gt.Abs(N2).or.
$ K.lt.1.or.K.gt.Abs(N3).or.L.lt.1.or.L.gt.N4)) then
Lind4 = -1
Sign = 1
Return
endIf
I1 = I - 1
J1 = J - 1
K1 = K - 1
L1 = L - 1
ICase = 0
If(N1.lt.0) ICase = ICase + 1
If(N2.lt.0) ICase = ICase + 2
If(N3.lt.0) ICase = ICase + 4
Goto (100,110,120,130,140,150,160,170), ICase+1
C
C No symmetries.
100 Lind4 = N1*(N2*(N3*L1+K1)+J1) + I1
Sign = 1
Return
C
C I<=J
110 IJ = Lind2(.False.,N1,N2,ASym,I,J,Sign)
N12 = (N2*(N2+1))/2
Lind4 = N12*(N3*L1+K1) + IJ
Return
C
C I,J<=K,L
120 JK = Lind2(.False.,N2,N3,ASym,J,K,Sign)
N23 = (N3*(N3+1))/2
Lind4 = N1*(N23*L1+JK) + I1
Return
C
C I<=J<=K,L
130 IJK = Lind3(.False.,N1,N2,N3,ASym,I,J,K,Sign)
N123 = (N3*(N3+1)*(N3+2))/6
Lind4 = N123*L1 + IJK
Return
C
C I,J,K<=L
140 KL = Lind2(.False.,N3,N4,ASym,K,L,Sign)
Lind4 = N1*(N2*KL+J1) + I1
Return
C
C I<=J,K<=L
150 IJ = Lind2(.False.,N1,N2,ASym,I,J,SignIJ)
KL = Lind2(.False.,N3,N4,ASym,K,L,SignKL)
N12 = (N2*(N2+1))/2
Lind4 = N12*KL + IJ
Sign = SignIJ*SignKL
Return
C
C I,J<=K<=L
160 JKL = Lind3(.False.,N2,N3,N4,ASym,J,K,L,Sign)
Lind4 = N1*JKL + I1
Return
C
C I<=J<=K<=L
170 IJ = Lind2(.False.,N1,N4,ASym,I,J,SignIJ)
KL = Lind2(.False.,N3,N4,ASym,K,L,SignKL)
Lind4 = Lind2(.False.,N1,N4,ASym,IJ+1,KL+1,Sign)
Sign = Sign*SignIJ*SignKL
Return
End
*Deck Lind5C
Integer Function Lind5C(Check,N1,N2,N3,N4,N5,ASym,I,J,K,L,M,
$ Sign)
Implicit None
C
C Linear or square indexing, I,J,K,L,M are 0-based, c order
C output is 0-based. Sign is +/-1.
C
Logical Check,ASym
Integer N1,N2,N3,N4,N5,I,J,K,L,M,Lind5,Sign
CF2PY Intent (Out) Sign
C
Lind5C = Lind5(Check,N5,N4,N3,N2,N1,ASym,M+1,L+1,K+1,J+1,I+1,
$ Sign)
Return
End
*Deck LInd5
Integer Function Lind5(Check,N1,N2,N3,N4,N5,ASym,I,J,K,L,M,Sign)
Implicit None
C
C Linear or square indexing, I,J,K,L,M are 1-based, output is
C 0-based. Sign is +/-1, LM indices can not be lower triangular.
C
Logical Check,ASym
Integer N1,N2,N3,N4,N5,I,J,K,L,M,M1,Lind4,N1A,N2A,N3A,N1234,Sign
CF2PY Intent (Out) Sign
C
If(Check.and.(N5.le.0.or.N4.le.0.or.(N1*N2*N3).eq.0.or.
$ (N1.lt.0.and.N1.ne.(-Abs(N2))).or.
$ (N2.lt.0.and.N2.ne.(-Abs(N3))).or.
$ (N3.lt.0.and.N2.ne.(-N4)).or.
$ I.lt.1.or.I.gt.Abs(N1).or.J.lt.1.or.J.gt.Abs(N2).or.
$ K.lt.1.or.K.gt.Abs(N3).or.L.lt.1.or.L.gt.N4)) then
Lind5 = -1
Sign = 1
Return
endIf
M1 = M - 1
N1A = Abs(N1)
N2A = Abs(N2)
N3A = Abs(N3)
N1234 = Lind4(.False.,N1,N2,N3,N4,ASym,N1A,N2A,N3A,N4,Sign) + 1
Lind5 = Lind4(.False.,N1,N2,N3,N4,ASym,I,J,K,L,Sign) + N1234*M1
Return
End
*Deck NumNZA
Integer Function NumNZA(NR,NTot,X)
Implicit None
Integer NR,NTot,I,J,I1
Real*8 X(NTot,NR),Zero
Parameter (Zero=0.0d0)
C
NumNZA = 0
Do 20 I = 1, NTot
I1 = 0
Do 10 J = 1, NR
If(X(I,J).ne.Zero) I1 = 1
10 Continue
20 NumNZA = NumNZA + I1
Return
End
*Deck NumNZR
Integer Function NumNZR(NR,NTot,X)
Implicit None
Integer NR,NTot,I,J,I1
Real*8 X(NR,NTot),Zero
Parameter (Zero=0.0d0)
C
NumNZR = 1
Do 20 I = 2, NTot
I1 = 0
Do 10 J = 1, NR
If(X(J,I).ne.Zero) I1 = 1
10 Continue
20 NumNZR = NumNZR + I1
Return
End
*Deck Rd_2E1
Subroutine Rd_2E1(IU,LR,NTot,LenBuf,RArr)
Implicit None
Integer IU,LR,NTot,LenBuf,IBuf(4,LenBuf),I,Ind,NDo,IJ,KL,IJKL
Real*8 Buf(LenBuf),RArr(LR),Zero
Parameter (Zero=0.0d0)
CF2PY Intent (Out) RArr
C
Do 20 I = 1, LR
20 RArr(I) = Zero
Do 50 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Read(IU) IBuf, Buf
Do 40 I = 1, NDo
If(IBuf(1,I).ge.IBuf(2,I)) then
IJ = (IBuf(1,I)*(IBuf(1,I)-1))/2 + IBuf(2,I)
else
IJ = (IBuf(2,I)*(IBuf(2,I)-1))/2 + IBuf(1,I)
endIf
If(IBuf(3,I).ge.IBuf(4,I)) then
KL = (IBuf(3,I)*(IBuf(3,I)-1))/2 + IBuf(4,I)
else
KL = (IBuf(4,I)*(IBuf(4,I)-1))/2 + IBuf(3,I)
endIf
If(IJ.ge.KL) then
IJKL = (IJ*(IJ-1))/2 + KL
else
IJKL = (KL*(KL-1))/2 + IJ
endIf
40 RArr(IJKL) = Buf(I)
50 Continue
Return
End
*Deck Rd_2EN
Subroutine Rd_2EN(IU,NR,LR,LRNR,NTot,LenBuf,RArr)
Implicit None
Integer IU,NR,LR,NTot,LenBuf,IBuf(4,LenBuf),I,J,Ind,NDo,IJ,KL,
$ IJKL,LRNR
Real*8 Buf(NR,LenBuf),RArr(LRNR),Zero
Parameter (Zero=0.0d0)
CF2PY Intent (Out) RArr
C
Do 10 I = 1, LRNR
10 RArr(I) = Zero
Do 50 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Read(IU) IBuf, Buf
Do 40 I = 1, NDo
If(IBuf(1,I).ge.IBuf(2,I)) then
IJ = (IBuf(1,I)*(IBuf(1,I)-1))/2 + IBuf(2,I)
else
IJ = (IBuf(2,I)*(IBuf(2,I)-1))/2 + IBuf(1,I)
endIf
If(IBuf(3,I).ge.IBuf(4,I)) then
KL = (IBuf(3,I)*(IBuf(3,I)-1))/2 + IBuf(4,I)
else
KL = (IBuf(4,I)*(IBuf(4,I)-1))/2 + IBuf(3,I)
endIf
If(IJ.ge.KL) then
IJKL = (IJ*(IJ-1))/2 + KL
else
IJKL = (KL*(KL-1))/2 + IJ
endIf
Do 30 J = 1, NR
30 RArr(IJKL+(J-1)*LR) = Buf(J,I)
40 Continue
50 Continue
Return
End
*Deck Rd_CBuf
Subroutine Rd_CBuf(IU,NTot,LenBuf,Arr)
Implicit None
Integer IU,NTot,LenBuf,Ind,NDo,I
Complex*16 Buf(LenBuf),Arr(NTot)
CF2PY Intent (Out) Arr
C
Do 20 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Read(IU) Buf
Do 10 I = 1, NDo
10 Arr(Ind+I) = Buf(I)
20 Continue
Return
End
*Deck Rd_Head
Subroutine Rd_Head(IU,NLab,NAtoms,NBasis,IAn,IAtTyp,AtmChg,C,
$ IBfAtm,IBfTyp,AtmWgt,NFC,NFV,ITran,IDum9,NShlAO,NPrmAO,NShlDB,
$ NPrmDB,NBTot)
Implicit None
Integer IU,NLab,NAtoms,NBasis,IAn(NAtoms),IAtTyp(NAtoms),
$ IBfAtm(NBasis),IBfTyp(NBasis),NFC,NFV,ITran,IDum9,NShlAO,NPrmAO,
$ NShlDB,NPrmDB,NBTot,I
Real*8 AtmChg(NAtoms),C(3*NAtoms),AtmWgt(NAtoms)
CF2PY Intent(Out) IAn,IAtTyp,AtmChg,C,IBfAtm,IBfTyp,AtmWgt,NFC,NFV,ITran
CF2PY Intent(Out) IDum9,NShlAO,NPrmAO,NShlDB,NPrmDB,NBTot
C
NFC = 0
NFV = 0
ITran = 0
IDum9 = 0
NShlAO = 0
NPrmAO = 0
NShlDB = 0
NPrmDB = 0
NBTot = 0
Call IClear(NAtoms,IAn)
If(NLab.ge.3) Read(IU) IAn
Call IClear(NAtoms,IAtTyp)
If(NLab.ge.4) Read(IU) IAtTyp
Call AClear(NAtoms,AtmChg)
If(NLab.ge.5) Read(IU) AtmChg
Call AClear(3*NAtoms,C)
If(NLab.ge.6) Read(IU) (C(I),I=1,3*NAtoms)
Call IClear(NBasis,IBfAtm)
Call IClear(NBasis,IBfTyp)
If(NLab.ge.7) Read(IU) IBfAtm,IBfTyp
Do 10 I = 1, NAtoms
10 AtmWgt(I) = 0.0d0
If(NLab.ge.8) then
Read(IU) AtmWgt
If(NLab.ge.9) then
Read(IU) NFC,NFV,ITran,IDum9
If(NLab.ge.11) then
Read(IU)
Read(IU) NShlAO,NPrmAO,NShlDB,NPrmDB,NBTot
Do 20 I = 12, NLab
Read(IU)
20 Continue
endIf
endIf
endIf
Return
End
*Deck Rd_IBuf
Subroutine Rd_IBuf(IU,NTot,LenBuf,Arr)
Implicit None
Integer IU,NTot,LenBuf,Buf(LenBuf),Arr(NTot),Ind,NDo,I
CF2PY Intent (Out) Arr
C
Do 20 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Read(IU) Buf
Do 10 I = 1, NDo
10 Arr(Ind+I) = Buf(I)
20 Continue
Return
End
*Deck Rd_Labl
Subroutine Rd_Labl(IU,IVers,CBuf,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5,
$ ASym,NRI,EOF)
Implicit None
Integer IVers,LStr,IU,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5,IASym,NRI
Parameter (LStr=64)
C The latest f2py is now "improved" and is now too stupid to handle
C character string lengths given by parameters.
C Character*(LStr) CBuf
Character*64 CBuf
Logical EOF,ASym
CF2PY Intent (Out) NI,NR,NRI,NTot,LenBuf,N1,N2,N3,N4,N5,ASym,NRI,EOF
CF2PY Intent (Out) CBuf
C
CBuf = ' '
NI = 0
NR = 0
NTot = 0
LenBuf = 0
N1 = 0
N2 = 0
N3 = 0
N4 = 0
N5 = 0
IASym = 0
If(IVers.eq.1) then
Read(IU,End=900) CBuf,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5
else
Read(IU,End=900) CBuf,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5,IASym
endIf
ASym = IASym.eq.-1
EOF = CBuf.eq.'END'
If(NR.ge.0) then
NRI = 1
else
NRI = 2
NR = -NR
endIf
If(.not.EOF) then
If(N2.eq.0) N2 = 1
If(N3.eq.0) N3 = 1
If(N4.eq.0) N4 = 1
If(N5.eq.0) N5 = 1
endIf
Return
900 CBuf = 'END'
EOF = .True.
NI = 0
NR = 0
NRI = 1
NTot = 0
LenBuf = 0
N1 = 0
N2 = 0
N3 = 0
N4 = 0
N5 = 0
ASym = .False.
Return
End
*Deck Rd_RBuf
Subroutine Rd_RBuf(IU,NTot,LenBuf,Arr)
Implicit None
Integer IU,NTot,LenBuf,Ind,NDo,I
Real*8 Buf(LenBuf),Arr(NTot)
CF2PY Intent (Out) Arr
C
Do 20 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Read(IU) Buf
Do 10 I = 1, NDo
10 Arr(Ind+I) = Buf(I)
20 Continue
Return
End
*Deck Rd_RInd
Subroutine Rd_RInd(IU,NR,LR,NTot,LenBuf,LNZ,RArr)
Implicit None
Integer IU,NR,LR,NTot,LenBuf,LNZ,I,J,Ind,NDo,IO,IBuf(LenBuf)
Real*8 Buf(NR,LenBuf),RArr(NR,LR),Zero
Parameter (Zero=0.0d0)
CF2PY Intent (Out) LNZ,RArr
C
Do 20 I = 1, LR
Do 10 J = 1, NR
10 RArr(J,I) = Zero
20 Continue
LNZ = 1
Do 50 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
If(NDo.eq.LenBuf.or..True.) then
Read(IU) IBuf, Buf
else
C For debugging
Read(IU) (IBuf(I),I=1,NDo), ((Buf(J,I),J=1,NR),I=1,NDo)
endIf
Do 40 I = 1, NDo
IO = IBuf(I)
LNZ = Max(LNZ,IO)
Do 30 J = 1, NR
30 RArr(J,IO) = Buf(J,I)
40 Continue
50 Continue
Return
End
*Deck Rd_Skip
Subroutine Rd_Skip(IU,NTot,LenBuf)
Implicit None
Integer IU,NTot,LenBuf,I,NRec
C
If(NTot.eq.0) Return
NRec = (NTot+LenBuf-1)/LenBuf
Do 10 I = 1, NRec
Read(IU)
10 Continue
Return
End
*Deck Wr_2E
Subroutine Wr_2E(IU,NTot,NR,N,LR,LenBuf,RArr)
Implicit None
Logical NonZ
Integer IU,NR,N,LR,LenBuf,IBuf(4,LenBuf),I,J,K,L,LimL,IJKL,
$ IB,IR,NNZ,NTot
Real*8 RArr(LR,NR),RBuf(NR,LenBuf),Zero
Parameter (Zero=0.0d0)
C
NNZ = 0
IB = 0
IJKL = 0
Do 60 I = 1, N
Do 50 J = 1, I
Do 40 K = 1, I
If(I.eq.K) then
LimL = J
else
LimL = K
endIf
Do 30 L = 1, LimL
IJKL = IJKL + 1
NonZ = RArr(IJKL,1).ne.Zero
Do 10 IR = 2, NR
10 NonZ = NonZ.or.RArr(IJKL,IR).ne.Zero
If(NonZ) then
IB = IB + 1
IBuf(1,IB) = I
IBuf(2,IB) = J
IBuf(3,IB) = K
IBuf(4,IB) = L
Do 20 IR = 1, NR
20 RBuf(IR,IB) = RArr(IJKL,IR)
If(IB.eq.LenBuf) then
Write(IU) IBuf, RBuf
NNZ = NNZ + LenBuf
IB = 0
endIf
endIf
30 Continue
40 Continue
50 Continue
60 Continue
If(IB.gt.0) then
Do 80 I = (IB+1), LenBuf
IBuf(1,I) = 0
IBuf(2,I) = 0
IBuf(3,I) = 0
IBuf(4,I) = 0
Do 70 IR = 1, NR
70 RBuf(IR,I) = Zero
80 Continue
Write(IU) IBuf, RBuf
NNZ = NNZ + IB
endIf
If(NNZ.ne.NTot) Stop 'NNZ not NTot in Wr_2E'
Return
End
*Deck Wr_CBuf
Subroutine Wr_CBuf(IU,NTot,LenBuf,Arr)
Implicit None
Integer IU,NTot,LenBuf,Ind,NDo,I
Complex*16 Buf(LenBuf),Arr(NTot),Zero
C The latest f2py is now "improved" and is now too stupid to handle
C complex variables in parameter statements.
C Parameter (Zero=(0.0d0,0.0d0))
Real*8 ZeroR
Parameter (ZeroR=0.0d0)
C
Zero = DCmplx(ZeroR,ZeroR)
Do 30 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Do 10 I = 1, NDo
10 Buf(I) = Arr(Ind+I)
Do 20 I = (NDo+1), LenBuf
20 Buf(I) = Zero
Write(IU) Buf
30 Continue
Return
End
*Deck Wr_Head
Subroutine Wr_Head(IU,NAtoms,NAt3,NBasis,IAn,IAtTyp,AtmChg,C,
$ IBfAtm,IBfTyp,AtmWgt,NFC,NFV,ITran,IDum9,NShlAO,NPrmAO,NShlDB,
$ NPrmDB,NBTot)
Implicit None
Integer LRec11,IZero
Parameter (LRec11=16,IZero=0)
Integer IU,NAtoms,NAt3,NBasis,IAn(NAtoms),IAtTyp(NAtoms),
$ IBfAtm(NBasis),IBfTyp(NBasis),NFC,NFV,ITran,IDum9,NShlAO,NPrmAO,
$ NShlDB,NPrmDB,NBTot,I,Rec11(LRec11),LRec(2)
Real*8 AtmChg(NAtoms),C(NAt3),AtmWgt(NAtoms)
C
If(Mod(NAtoms,2).eq.1) then
Write(IU) IAn,IZero
Write(IU) IAtTyp,IZero
else
Write(IU) IAn
Write(IU) IAtTyp
endIf
Write(IU) AtmChg
Write(IU) (C(I),I=1,3*NAtoms)
Write(IU) IBfAtm,IBfTyp
Write(IU) AtmWgt
Write(IU) NFC,NFV,ITran,IDum9
LRec(1) = LRec11
LRec(2) = 0
Write(IU) LRec
Do 10 I = 1, LRec11
10 Rec11(I) = 0
Rec11(1) = NShlAO
Rec11(2) = NPrmAO
Rec11(3) = NShlDB
Rec11(4) = NPrmDB
Rec11(5) = NBTot
Write(IU) Rec11
Return
End
*Deck Wr_IBuf
Subroutine Wr_IBuf(IU,NTot,LenBuf,Arr)
Implicit None
Integer IU,NTot,LenBuf,Buf(LenBuf),Arr(NTot),Ind,NDo,I
C
Do 30 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Do 10 I = 1, NDo
10 Buf(I) = Arr(Ind+I)
Do 20 I = (NDo+1), LenBuf
20 Buf(I) = 0
Write(IU) Buf
30 Continue
Return
End
*Deck Wr_Labl
Subroutine Wr_Labl(IU,CBuf,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5,ASym)
Implicit None
Logical ASym
Integer LStr,IU,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5,IASym
Parameter (LStr=64)
C The latest f2py is now "improved" and is now too stupid to handle
C character string lengths given by parameters.
C Character CBuf*(*), CBufL*(LStr)
Character CBuf*(*), CBufL*64
C
If(ASym) then
IASym = -1
else
IASym = 0
endIf
CBufL = CBuf
Write(IU) CBufL,NI,NR,NTot,LenBuf,N1,N2,N3,N4,N5,IASym
Return
End
*Deck Wr_RBuf
Subroutine Wr_RBuf(IU,NTot,LenBuf,Arr)
Implicit None
Integer IU,NTot,LenBuf,Ind,NDo,I
Real*8 Buf(LenBuf),Arr(NTot),Zero
Parameter (Zero=0.0d0)
C
Do 30 Ind = 0, (NTot-1), LenBuf
NDo = Min(LenBuf,NTot-Ind)
Do 10 I = 1, NDo
10 Buf(I) = Arr(Ind+I)
Do 20 I = (NDo+1), LenBuf
20 Buf(I) = Zero
Write(IU) Buf
30 Continue
Return
End
*Deck Wr_RInd
Subroutine Wr_RInd(IU,NR,LR,NTot,LenBuf,RArr)
Implicit None
Logical NonZer
Integer IU,NR,LR,NTot,LenBuf,I,J,IBuf(LenBuf),NNZ,IB
Real*8 Buf(NR,LenBuf),RArr(NR,LR),Zero
Parameter (Zero=0.0d0)
C
NNZ = 0