-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
158 lines (137 loc) · 4.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# @file train.py
# @author: wujiangu
# @date: 2023-05-17 13:48
# @description: train
import os
import torch
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import (
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
ModelSummary,
)
from lightning.pytorch.loggers import TensorBoardLogger, WandbLogger
from torch.utils.data import DataLoader
from cfg.cfg import cfg
from dataset.spectrum import SpectrumDataset
from model.model_pl import BaselinePl
from utils.tools import arg_parser, get_free_gpu_index, seed_every_thing
torch.set_float32_matmul_precision("high")
def main():
# 1. seed everything and set gpu
seed_every_thing(cfg["seed"])
if cfg["device"] == "auto":
os.environ["CUDA_VISIBLE_DEVICES"] = str(
get_free_gpu_index(cfg["device_list"]))
else:
os.environ["CUDA_VISIBLE_DEVICES"] = cfg["device"]
# 2. load data
train_dataset = SpectrumDataset(
data_dir=os.path.join(cfg["data_dir"], "train"),
class_names=cfg["class_names"],
spectrum_length=cfg["spectrum_length"],
)
val_dataset = SpectrumDataset(
data_dir=os.path.join(cfg["data_dir"], "val"),
class_names=cfg["class_names"],
spectrum_length=cfg["spectrum_length"],
)
test_dataset = SpectrumDataset(
data_dir=os.path.join(cfg["data_dir"], "test"),
class_names=cfg["class_names"],
spectrum_length=cfg["spectrum_length"],
)
# 3. load dataloader
train_dataloader = DataLoader(
train_dataset,
batch_size=cfg["batch_size"],
shuffle=True,
num_workers=cfg["num_workers"],
pin_memory=True,
)
val_dataloader = DataLoader(
val_dataset,
batch_size=cfg["batch_size"],
shuffle=False,
num_workers=cfg["num_workers"],
pin_memory=True,
)
test_dataloader = DataLoader(
test_dataset,
batch_size=cfg["batch_size"],
shuffle=False,
num_workers=cfg["num_workers"],
pin_memory=True,
)
# 4. model
baseline_pl = BaselinePl(cfg)
# 5. load trainer
# 5.1 set logger
if cfg["log"]:
loggers = []
log_path = cfg["log_path"]
project = cfg["project"]
sweep = cfg["sweep"]
t_save_dir = os.path.join(log_path, project)
t_logger = TensorBoardLogger(save_dir=t_save_dir, name=sweep)
t_logger.log_hyperparams(cfg)
t_logger.save()
version = f"version_{t_logger.version}"
w_save_dir = os.path.join(t_save_dir, sweep, version)
# get device ip and user name
device_ip = os.popen("hostname -I").read().strip()
user_name = os.popen("whoami").read().strip()
print("=" * 50, version, "=" * 50, sep="\n")
w_logger = WandbLogger(
project=cfg["project"],
save_dir=w_save_dir,
name=f"{sweep}_{version}_{user_name}@{device_ip}",
)
loggers.append(w_logger)
loggers.append(t_logger)
# 3.2 set callbacks
checkpoint_callback = ModelCheckpoint(
monitor="val_acc",
dirpath=os.path.join(w_save_dir, "checkpoints"),
filename="{epoch:03d}-{val_acc:.4f}",
save_top_k=3,
mode="max",
)
lr_monitor = LearningRateMonitor(logging_interval="step")
early_stop_callback = EarlyStopping(
monitor="val_acc",
patience=cfg["patience"],
verbose=True,
mode="max",
min_delta=cfg["min_delta"],
)
callbacks = [
checkpoint_callback,
lr_monitor,
early_stop_callback,
ModelSummary(-1),
]
# 5.2 set trainer
trainer = Trainer(
max_epochs=cfg["epochs"],
logger=loggers if cfg["log"] else None,
callbacks=callbacks if cfg["log"] else [ModelSummary(-1)],
log_every_n_steps=1,
fast_dev_run=cfg["debug"],
precision=cfg["precision"],
)
trainer.fit(baseline_pl, train_dataloader, val_dataloader)
# 6. test
if cfg["test"] != 0:
trainer.test(
baseline_pl,
test_dataloader,
ckpt_path=None
if not cfg["log"] else checkpoint_callback.best_model_path,
)
if __name__ == "__main__":
arg_parser(cfg)
main()