Description
🐛 Describe the bug
Using this code:
import torch
from torchaudio.io import StreamReader
video_path = <my_local_path>
stream_reader = StreamReader(video_path)
stream_reader.add_video_stream(5, decoder= 'h264_cuvid', hw_accel='cuda')
start_timestep = 10
stream_reader.seek(start_timestep)
for (chunk, ) in stream_reader.stream():
for frame in chunk:
yield frame
The seek method is ignored. The resulting video iterator always starts with the 0 starting frame.
Versions
Collecting environment information...
CUDA runtime version: 11.7.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A10G
Nvidia driver version: 555.42.02
cuDNN version: Probably one of the following:
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.6.0
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.6.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R32
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
Stepping: 0
BogoMIPS: 5599.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 128 KiB (4 instances)
L1i cache: 128 KiB (4 instances)
L2 cache: 2 MiB (4 instances)
L3 cache: 16 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-7
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.23.5
[pip3] onnx==1.16.0
[pip3] onnx-graphsurgeon==0.5.2
[pip3] pytorch-lightning==1.9.4
[pip3] pytorch3d==0.7.2
[pip3] torch==1.13.1+cu117
[pip3] torch-tensorrt==1.3.0
[pip3] torchaudio==0.13.1+cu117
[pip3] torchmetrics==1.3.2
[pip3] torchvision==0.14.1+cu117
[pip3] triton==2.3.0
[conda] numpy