-
Notifications
You must be signed in to change notification settings - Fork 272
/
axi_lite_regs.sv
483 lines (454 loc) · 20.1 KB
/
axi_lite_regs.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
// Copyright (c) 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <[email protected]>
// - Andreas Kurth <[email protected]>
`include "axi/typedef.svh"
`include "common_cells/registers.svh"
/// AXI4-Lite registers with optional read-only and protection features.
///
/// This module contains a parametrizable number of bytes in flip-flops (FFs) and makes them
/// accessible on two interfaces:
/// - as memory-mapped AXI4-Lite slave (ports `axi_req_i` and `axi_resp_o`), and
/// - as wires to directly attach other hardware logic (ports `reg_d_i`, `reg_load_i`, `reg_q_o`,
/// `wr_active_o`, `rd_active_o`).
///
/// ## Address Map
///
/// The address range covered by this module is defined by `RegNumBytes`. The base address of this
/// module *must* be aligned to `RegNumBytes`. The first byte is accessible at offset `0`, the last
/// byte is accessible at offset `RegNumBytes-1`. The slice `[$clog2(RegNumBytes)-1:0]` of a given
/// address is used to decode the accessed byte within this module. Address bits outside that slice
/// are ignored. Accesses to addresses within the slice but with an offset above the last byte are
/// responded with `SLVERR`.
///
/// ## Read-Only Bytes
///
/// Any set of bytes can be configured as read-only by setting the `AxiReadOnly` parameter
/// accordingly. A read-only byte cannot be written via the AXI interface, but it can be changed
/// from the logic interface.
///
/// When one or multiple bytes in a write transaction are read-only, they are not modified. A write
/// transaction is responded with `OKAY` if it wrote at least one byte. Write transactions / that
/// have `wstrb` set *only* for read-only bytes are responded with `SLVERR`.
///
/// This read-only mechanism can be used to expose constants (lookup-table data) as follows.
///
/// ### Exposing Constants
///
/// To make a byte with constant value (e.g., implemented as LUT instead of FF after synthesis)
/// readable from the AXI4-Lite port:
/// - Make the byte read-only from the AXI4-Lite port by setting its `AxiReadOnly` bit to `1`.
/// - Disable loading the byte from logic by driving its `reg_load_i` bit to `0`.
/// - Define the value of the byte by setting its `RegRstVal` entry.
///
/// ## Protection
///
/// This module can be configured to only allow *privileged* and/or *secure* accesses (see A4.7
/// of the AXI4 specification) by setting the `PrivProtOnly` and/or `SecuProtOnly` parameter,
/// respectively.
module axi_lite_regs #(
/// The size of the register field in bytes.
parameter int unsigned RegNumBytes = 32'd0,
/// Address width of the AXI4-Lite port.
///
/// The minimum value of this parameter is `$clog2(RegNumBytes)`.
parameter int unsigned AxiAddrWidth = 32'd0,
/// Data width of the AXI4-Lite port.
parameter int unsigned AxiDataWidth = 32'd0,
/// Only allow *privileged* accesses on the AXI4-Lite port.
///
/// If this parameter is set to `1`, this module only allows reads and writes that have the
/// `AxProt[0]` bit set. If a transaction does not have the `AxProt[0]` bit set, this module
/// replies with `SLVERR` and does not read or write register data.
parameter bit PrivProtOnly = 1'b0,
/// Only allow *secure* accesses on the AXI4-Lite port.
///
/// If this parameter is set to `1`, this module only allows reads and writes that have the
/// `AxProt[1]` bit set. If a transaction does not have the `AxProt[1]` bit set, this module
/// replies with `SLVERR` and does not read or write register data.
parameter bit SecuProtOnly = 1'b0,
/// Define individual bytes as *read-only from the AXI4-Lite port*.
///
/// This parameter is an array with one bit for each byte. If that bit is `0`, the byte can be
/// read and written on the AXI4-Lite port; if that bit is `1`, the byte can only be read on the
/// AXI4-Lite port.
parameter logic [RegNumBytes-1:0] AxiReadOnly = {RegNumBytes{1'b0}},
/// Constant (=**do not overwrite!**); type of a byte is 8 bit.
parameter type byte_t = logic [7:0],
/// Reset value for the whole register array.
///
/// This parameter is an array with one byte value for each byte. At reset, each byte is
/// assigned its value from this array.
parameter byte_t [RegNumBytes-1:0] RegRstVal = {RegNumBytes{8'h00}},
/// Request struct of the AXI4-Lite port.
parameter type req_lite_t = logic,
/// Response struct of the AXI4-Lite port.
parameter type resp_lite_t = logic
) (
/// Rising-edge clock of all ports
input logic clk_i,
/// Asynchronous reset, active low
input logic rst_ni,
/// AXI4-Lite slave request
input req_lite_t axi_req_i,
/// AXI4-Lite slave response
output resp_lite_t axi_resp_o,
/// Signals that a byte is being written from the AXI4-Lite port in the current clock cycle. This
/// signal is asserted regardless of the value of `AxiReadOnly` and can therefore be used by
/// surrounding logic to react to write-on-read-only-byte errors.
output logic [RegNumBytes-1:0] wr_active_o,
/// Signals that a byte is being read from the AXI4-Lite port in the current clock cycle.
output logic [RegNumBytes-1:0] rd_active_o,
/// Input value of each byte. If `reg_load_i` is `1` for a byte in the current clock cycle, the
/// byte register in this module is set to the value of the byte in `reg_d_i` at the next clock
/// edge.
input byte_t [RegNumBytes-1:0] reg_d_i,
/// Load enable of each byte.
///
/// If `reg_load_i` is `1` for a byte defined as non-read-only in a clock cycle, an AXI4-Lite
/// write transaction is stalled when it tries to write the same byte. That is, a write
/// transaction is stalled if all of the following conditions are true for the byte at index `i`:
/// - `AxiReadOnly[i]` is `0`,
/// - `reg_load_i[i]` is `1`,
/// - the bit in `axi_req_i.w.strb` that affects the byte is `1`.
///
/// If unused, set this input to `'0`.
input logic [RegNumBytes-1:0] reg_load_i,
/// The registered value of each byte.
output byte_t [RegNumBytes-1:0] reg_q_o
);
// Define the number of register chunks needed to map all `RegNumBytes` to the AXI channel.
// Eg: `AxiDataWidth == 32'd32`
// AXI strb: 3 2 1 0
// | | | |
// *---------*---------* | | |
// | *-------|-*-------|-* | |
// | | *-----|-|-*-----|-|-* |
// | | | *---|-|-|-*---|-|-|-*
// | | | | | | | | | | | |
// Reg byte: B A 9 8 7 6 5 4 3 2 1 0
// | chunk_2 | chunk_1 | chunk_0 |
localparam int unsigned AxiStrbWidth = AxiDataWidth / 32'd8;
localparam int unsigned NumChunks = cf_math_pkg::ceil_div(RegNumBytes, AxiStrbWidth);
localparam int unsigned ChunkIdxWidth = (NumChunks > 32'd1) ? $clog2(NumChunks) : 32'd1;
// Type of the index to identify a specific register chunk.
typedef logic [ChunkIdxWidth-1:0] chunk_idx_t;
// Find out how many bits of the address are applicable for this module.
// Look at the `AddrWidth` number of LSBs to calculate the multiplexer index of the AXI.
localparam int unsigned AddrWidth = (RegNumBytes > 32'd1) ? ($clog2(RegNumBytes)+1) : 32'd2;
typedef logic [AddrWidth-1:0] addr_t;
// Define the address map which maps each register chunk onto an AXI address.
typedef struct packed {
int unsigned idx;
addr_t start_addr;
addr_t end_addr;
} axi_rule_t;
axi_rule_t [NumChunks-1:0] addr_map;
for (genvar i = 0; i < NumChunks; i++) begin : gen_addr_map
assign addr_map[i] = axi_rule_t'{
idx: i,
start_addr: addr_t'( i * AxiStrbWidth),
end_addr: addr_t'((i+1)* AxiStrbWidth)
};
end
// Channel definitions for spill register
typedef logic [AxiDataWidth-1:0] axi_data_t;
`AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_lite_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_t, axi_data_t)
// Register array declarations
byte_t [RegNumBytes-1:0] reg_q, reg_d;
logic [RegNumBytes-1:0] reg_update;
// Write logic
chunk_idx_t aw_chunk_idx;
logic aw_dec_valid;
b_chan_lite_t b_chan;
logic b_valid, b_ready;
logic aw_prot_ok;
logic chunk_loaded, chunk_ro;
// Flag for telling that the protection level is the right one.
assign aw_prot_ok = (PrivProtOnly ? axi_req_i.aw.prot[0] : 1'b1) &
(SecuProtOnly ? axi_req_i.aw.prot[1] : 1'b1);
// Have a flag which is true if any of the bytes inside a chunk are directly loaded.
logic [AxiStrbWidth-1:0] load;
logic [AxiStrbWidth-1:0] read_only;
// Address of the lowest byte byte of a chunk accessed by an AXI write transaction.
addr_t byte_w_addr;
assign byte_w_addr = addr_t'(aw_chunk_idx * AxiStrbWidth);
for (genvar i = 0; i < AxiStrbWidth; i++) begin : gen_load_assign
// Indexed byte address
addr_t reg_w_idx;
assign reg_w_idx = byte_w_addr + addr_t'(i);
// Only assert load flag for non read only bytes.
assign load[i] = (reg_w_idx < RegNumBytes) ?
(reg_load_i[reg_w_idx] && !AxiReadOnly[reg_w_idx]) : 1'b0;
// Flag to find out that all bytes of the chunk are read only.
assign read_only[i] = (reg_w_idx < RegNumBytes) ? AxiReadOnly[reg_w_idx] : 1'b1;
end
// Only assert the loaded flag if there could be a load conflict between a strobe and load
// signal.
assign chunk_loaded = |(load & axi_req_i.w.strb);
assign chunk_ro = &read_only;
// Register write logic.
always_comb begin
automatic addr_t reg_byte_idx = '0;
// default assignments
reg_d = reg_q;
reg_update = '0;
// Channel handshake
axi_resp_o.aw_ready = 1'b0;
axi_resp_o.w_ready = 1'b0;
// Response
b_chan = b_chan_lite_t'{resp: axi_pkg::RESP_SLVERR, default: '0};
b_valid = 1'b0;
// write active flag
wr_active_o = '0;
// Control
// Handle all non AXI register loads.
for (int unsigned i = 0; i < RegNumBytes; i++) begin
if (reg_load_i[i]) begin
reg_d[i] = reg_d_i[i];
reg_update[i] = 1'b1;
end
end
// Handle load from AXI write.
// `b_ready` is allowed to be a condition as it comes from a spill register.
if (axi_req_i.aw_valid && axi_req_i.w_valid && b_ready) begin
// The write can be performed when these conditions are true:
// - AW decode is valid.
// - `axi_req_i.aw.prot` has the right value.
if (aw_dec_valid && aw_prot_ok) begin
// Stall write as long as any direct load is going on in the current chunk.
// Read-only bytes within a chunk have no influence on stalling.
if (!chunk_loaded) begin
// Go through all bytes on the W channel.
for (int unsigned i = 0; i < AxiStrbWidth; i++) begin
reg_byte_idx = byte_w_addr + addr_t'(i);
// Only execute if the byte is mapped onto the register array.
if (reg_byte_idx < RegNumBytes) begin
// Only update the reg from an AXI write if it is not `ReadOnly`.
// Only connect the data and load to the reg, if the byte is written from AXI.
// This allows for simultaneous direct load onto unwritten bytes.
if (!AxiReadOnly[reg_byte_idx] && axi_req_i.w.strb[i]) begin
reg_d[reg_byte_idx] = axi_req_i.w.data[8*i+:8];
reg_update[reg_byte_idx] = 1'b1;
end
wr_active_o[reg_byte_idx] = axi_req_i.w.strb[i];
end
end
b_chan.resp = chunk_ro ? axi_pkg::RESP_SLVERR : axi_pkg::RESP_OKAY;
b_valid = 1'b1;
axi_resp_o.aw_ready = 1'b1;
axi_resp_o.w_ready = 1'b1;
end
end else begin
// Send default B error response on each not allowed write transaction.
b_valid = 1'b1;
axi_resp_o.aw_ready = 1'b1;
axi_resp_o.w_ready = 1'b1;
end
end
end
// Read logic
chunk_idx_t ar_chunk_idx;
logic ar_dec_valid;
r_chan_lite_t r_chan;
logic r_valid, r_ready;
logic ar_prot_ok;
assign ar_prot_ok = (PrivProtOnly ? axi_req_i.ar.prot[0] : 1'b1) &
(SecuProtOnly ? axi_req_i.ar.prot[1] : 1'b1);
// Multiplexer to determine R channel
always_comb begin
automatic int unsigned reg_byte_idx = '0;
// Default R channel throws an error.
r_chan = r_chan_lite_t'{
data: axi_data_t'(32'hBA5E1E55),
resp: axi_pkg::RESP_SLVERR,
default: '0
};
// Default nothing is reading the registers
rd_active_o = '0;
// Read is valid on a chunk
if (ar_dec_valid && ar_prot_ok) begin
// Calculate the corresponding byte index from `ar_chunk_idx`.
for (int unsigned i = 0; i < AxiStrbWidth; i++) begin
reg_byte_idx = unsigned'(ar_chunk_idx) * AxiStrbWidth + i;
// Guard to not index outside the `reg_q_o` array.
if (reg_byte_idx < RegNumBytes) begin
r_chan.data[8*i+:8] = reg_q_o[reg_byte_idx];
rd_active_o[reg_byte_idx] = r_valid & r_ready;
end else begin
r_chan.data[8*i+:8] = 8'h00;
end
end
r_chan.resp = axi_pkg::RESP_OKAY;
end
end
assign r_valid = axi_req_i.ar_valid; // to spill register
assign axi_resp_o.ar_ready = r_ready; // from spill register
// Register array mapping, even read only register can be loaded over `reg_load_i`.
for (genvar i = 0; i < RegNumBytes; i++) begin : gen_rw_regs
`FFLARN(reg_q[i], reg_d[i], reg_update[i], RegRstVal[i], clk_i, rst_ni)
assign reg_q_o[i] = reg_q[i];
end
addr_decode #(
.NoIndices ( NumChunks ),
.NoRules ( NumChunks ),
.addr_t ( addr_t ),
.rule_t ( axi_rule_t )
) i_aw_decode (
.addr_i ( addr_t'(axi_req_i.aw.addr) ), // Only look at the `AddrWidth` LSBs.
.addr_map_i ( addr_map ),
.idx_o ( aw_chunk_idx ),
.dec_valid_o ( aw_dec_valid ),
.dec_error_o ( /*not used*/ ),
.en_default_idx_i ( '0 ),
.default_idx_i ( '0 )
);
addr_decode #(
.NoIndices ( NumChunks ),
.NoRules ( NumChunks ),
.addr_t ( addr_t ),
.rule_t ( axi_rule_t )
) i_ar_decode (
.addr_i ( addr_t'(axi_req_i.ar.addr) ), // Only look at the `AddrWidth` LSBs.
.addr_map_i ( addr_map ),
.idx_o ( ar_chunk_idx ),
.dec_valid_o ( ar_dec_valid ),
.dec_error_o ( /*not used*/ ),
.en_default_idx_i ( '0 ),
.default_idx_i ( '0 )
);
// Add a cycle delay on AXI response, cut all comb paths between slave port inputs and outputs.
spill_register #(
.T ( b_chan_lite_t ),
.Bypass ( 1'b0 )
) i_b_spill_register (
.clk_i,
.rst_ni,
.valid_i ( b_valid ),
.ready_o ( b_ready ),
.data_i ( b_chan ),
.valid_o ( axi_resp_o.b_valid ),
.ready_i ( axi_req_i.b_ready ),
.data_o ( axi_resp_o.b )
);
// Add a cycle delay on AXI response, cut all comb paths between slave port inputs and outputs.
spill_register #(
.T ( r_chan_lite_t ),
.Bypass ( 1'b0 )
) i_r_spill_register (
.clk_i,
.rst_ni,
.valid_i ( r_valid ),
.ready_o ( r_ready ),
.data_i ( r_chan ),
.valid_o ( axi_resp_o.r_valid ),
.ready_i ( axi_req_i.r_ready ),
.data_o ( axi_resp_o.r )
);
// Validate parameters.
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
assert (RegNumBytes > 32'd0) else
$fatal(1, "The number of bytes must be at least 1!");
assert (AxiAddrWidth >= AddrWidth) else
$fatal(1, "AxiAddrWidth is not wide enough, has to be at least %0d-bit wide!", AddrWidth);
assert ($bits(axi_req_i.aw.addr) == AxiAddrWidth) else
$fatal(1, "AddrWidth does not match req_i.aw.addr!");
assert ($bits(axi_req_i.ar.addr) == AxiAddrWidth) else
$fatal(1, "AddrWidth does not match req_i.ar.addr!");
assert (AxiDataWidth == $bits(axi_req_i.w.data)) else
$fatal(1, "AxiDataWidth has to be: AxiDataWidth == $bits(axi_req_i.w.data)!");
assert (AxiDataWidth == $bits(axi_resp_o.r.data)) else
$fatal(1, "AxiDataWidth has to be: AxiDataWidth == $bits(axi_resp_o.r.data)!");
assert (RegNumBytes == $bits(AxiReadOnly)) else
$fatal(1, "Each register needs a `ReadOnly` flag!");
end
default disable iff (~rst_ni);
for (genvar i = 0; i < RegNumBytes; i++) begin
assert property (@(posedge clk_i) (!reg_load_i[i] && AxiReadOnly[i] |=> $stable(reg_q_o[i])))
else $fatal(1, "Read-only register at `byte_index: %0d` was changed by AXI!", i);
end
`endif
// pragma translate_on
endmodule
`include "axi/assign.svh"
/// Interface variant of [`axi_lite_regs`](module.axi_lite_regs).
///
/// See the documentation of the main module for the definition of ports and parameters.
module axi_lite_regs_intf #(
parameter type byte_t = logic [7:0],
parameter int unsigned REG_NUM_BYTES = 32'd0,
parameter int unsigned AXI_ADDR_WIDTH = 32'd0,
parameter int unsigned AXI_DATA_WIDTH = 32'd0,
parameter bit PRIV_PROT_ONLY = 1'd0,
parameter bit SECU_PROT_ONLY = 1'd0,
parameter logic [REG_NUM_BYTES-1:0] AXI_READ_ONLY = {REG_NUM_BYTES{1'b0}},
parameter byte_t [REG_NUM_BYTES-1:0] REG_RST_VAL = {REG_NUM_BYTES{8'h00}}
) (
input logic clk_i,
input logic rst_ni,
AXI_LITE.Slave slv,
output logic [REG_NUM_BYTES-1:0] wr_active_o,
output logic [REG_NUM_BYTES-1:0] rd_active_o,
input byte_t [REG_NUM_BYTES-1:0] reg_d_i,
input logic [REG_NUM_BYTES-1:0] reg_load_i,
output byte_t [REG_NUM_BYTES-1:0] reg_q_o
);
typedef logic [AXI_ADDR_WIDTH-1:0] addr_t;
typedef logic [AXI_DATA_WIDTH-1:0] data_t;
typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
`AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_lite_t, addr_t)
`AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_lite_t, data_t, strb_t)
`AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_lite_t)
`AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_lite_t, addr_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_t, data_t)
`AXI_LITE_TYPEDEF_REQ_T(req_lite_t, aw_chan_lite_t, w_chan_lite_t, ar_chan_lite_t)
`AXI_LITE_TYPEDEF_RESP_T(resp_lite_t, b_chan_lite_t, r_chan_lite_t)
req_lite_t axi_lite_req;
resp_lite_t axi_lite_resp;
`AXI_LITE_ASSIGN_TO_REQ(axi_lite_req, slv)
`AXI_LITE_ASSIGN_FROM_RESP(slv, axi_lite_resp)
axi_lite_regs #(
.RegNumBytes ( REG_NUM_BYTES ),
.AxiAddrWidth ( AXI_ADDR_WIDTH ),
.AxiDataWidth ( AXI_DATA_WIDTH ),
.PrivProtOnly ( PRIV_PROT_ONLY ),
.SecuProtOnly ( SECU_PROT_ONLY ),
.AxiReadOnly ( AXI_READ_ONLY ),
.RegRstVal ( REG_RST_VAL ),
.req_lite_t ( req_lite_t ),
.resp_lite_t ( resp_lite_t )
) i_axi_lite_regs (
.clk_i,
.rst_ni,
.axi_req_i ( axi_lite_req ),
.axi_resp_o ( axi_lite_resp ),
.wr_active_o,
.rd_active_o,
.reg_d_i,
.reg_load_i,
.reg_q_o
);
// Validate parameters.
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
assert (AXI_ADDR_WIDTH == $bits(slv.aw_addr))
else $fatal(1, "AXI_ADDR_WIDTH does not match slv interface!");
assert (AXI_DATA_WIDTH == $bits(slv.w_data))
else $fatal(1, "AXI_DATA_WIDTH does not match slv interface!");
end
`endif
// pragma translate_on
endmodule