-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_utils.py
46 lines (38 loc) · 1.37 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import h5py
import torch
from torch_geometric.data import Data, InMemoryDataset
from torch_geometric.utils import remove_self_loops
def load_feature(path):
with h5py.File(path, 'r') as f:
X = f['X'][()]
eI = f['eI'][()]
y = f['y'][()]
eAttr = f['eAttr'][()]
X = torch.tensor(X, dtype=torch.float32)
eI = torch.tensor(eI, dtype=torch.long)
# eI = remove_self_loops(eI)
# eI = eI[0]
y = torch.tensor(y, dtype=torch.long)
eAttr = torch.tensor(eAttr, dtype=torch.float32)
data = Data(x=X, edge_index=eI, y=y, edge_attr=eAttr)
return data
class GRDataset(InMemoryDataset):
def __init__(self, root, transform=None, pre_transform=None):
super(GRDataset, self).__init__(root, transform, pre_transform)
self.root = root
self.transform = transform
self.pre_transform = pre_transform
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return [x for x in self.root]
@property
def processed_file_names(self):
return ['data.pt']
def download(self):
pass
def process(self):
data_list = [load_feature(os.path.join(self.raw_dir, x)) for x in os.listdir(self.raw_dir)]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])