forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering_ranges_walker.hh
306 lines (267 loc) · 11.5 KB
/
clustering_ranges_walker.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
/*
* Copyright (C) 2017-present ScyllaDB
*
* Modified by ScyllaDB
*/
/*
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#pragma once
#include "schema/schema.hh"
#include "query-request.hh"
#include "mutation/mutation_fragment.hh"
#include "mutation/mutation_fragment_v2.hh"
// Utility for in-order checking of overlap with position ranges.
class clustering_ranges_walker {
const schema& _schema;
const query::clustering_row_ranges& _ranges;
boost::iterator_range<query::clustering_row_ranges::const_iterator> _current_range;
bool _in_current; // next position is known to be >= _current_start
bool _past_current; // next position is known to be >= _current_end
bool _using_clustering_range; // Whether current range comes from _current_range
bool _with_static_row;
position_in_partition_view _current_start;
position_in_partition_view _current_end;
std::optional<position_in_partition> _trim;
size_t _change_counter = 1;
tombstone _tombstone;
private:
bool advance_to_next_range() {
_in_current = false;
_past_current = false;
if (_using_clustering_range) {
if (!_current_range) {
return false;
}
_current_range.advance_begin(1);
}
++_change_counter;
_using_clustering_range = true;
if (!_current_range) {
_current_end = _current_start = position_in_partition_view::after_all_clustered_rows();
return false;
}
_current_start = position_in_partition_view::for_range_start(_current_range.front());
_current_end = position_in_partition_view::for_range_end(_current_range.front());
return true;
}
void set_current_positions() {
_using_clustering_range = false;
if (!_with_static_row) {
if (!_current_range) {
_current_start = position_in_partition_view::before_all_clustered_rows();
} else {
_current_start = position_in_partition_view::for_range_start(_current_range.front());
_current_end = position_in_partition_view::for_range_end(_current_range.front());
_using_clustering_range = true;
}
} else {
// If the first range is contiguous with the static row, then advance _current_end as much as we can
if (_current_range && !_current_range.front().start()) {
_current_end = position_in_partition_view::for_range_end(_current_range.front());
_using_clustering_range = true;
}
}
}
public:
clustering_ranges_walker(const schema& s, const query::clustering_row_ranges& ranges, bool with_static_row = true)
: _schema(s)
, _ranges(ranges)
, _current_range(ranges)
, _in_current(with_static_row)
, _past_current(false)
, _with_static_row(with_static_row)
, _current_start(position_in_partition_view::for_static_row())
, _current_end(position_in_partition_view::before_all_clustered_rows()) {
set_current_positions();
}
clustering_ranges_walker(const clustering_ranges_walker&) = delete;
clustering_ranges_walker(clustering_ranges_walker&&) = delete;
clustering_ranges_walker& operator=(const clustering_ranges_walker&) = delete;
clustering_ranges_walker& operator=(clustering_ranges_walker&&) = delete;
using range_tombstones = utils::small_vector<range_tombstone_change, 1>;
// Result of advancing to a given position.
struct progress {
// True iff the position is contained in requested ranges.
bool contained;
// Range tombstone changes to emit which reflect current range tombstone
// trimmed to requested ranges, up to the advanced-to position (inclusive).
//
// It is guaranteed that the sequence of tombstones returned from all
// advance_to() calls will be the same for a given ranges no matter at
// which positions you call advance_to(), provided that you change
// the current tombstone at the same positions.
// Redundant changes will not be generated.
// This is to support the guarantees of mutation_reader.
range_tombstones rts;
};
// Excludes positions smaller than pos from the ranges.
// pos should be monotonic.
// No constraints between pos and positions passed to advance_to().
//
// After the invocation, when !out_of_range(), lower_bound() returns the smallest position still contained.
//
// After this, advance_to(lower_bound()) will always emit a range tombstone change for pos
// if there is an active range tombstone and !out_of_range().
void trim_front(position_in_partition pos) {
position_in_partition::less_compare less(_schema);
do {
if (!less(_current_start, pos)) {
break;
}
if (less(pos, _current_end)) {
_trim = std::move(pos);
_current_start = *_trim;
_in_current = false;
++_change_counter;
break;
}
} while (advance_to_next_range());
}
// Returns true if given position is contained.
// Must be called with monotonic positions.
// Idempotent.
bool advance_to(position_in_partition_view pos) {
return advance_to(pos, _tombstone).contained;
}
// Returns result of advancing over clustering restrictions.
// Must be called with monotonic positions.
//
// The walker tracks current clustered tombstone.
// The new_tombstone will be the current clustered tombstone after advancing, starting from pos (inclusive).
// The returned progress object contains range_tombstone_change fragments which reflect changes of
// the current clustered tombstone trimmed to the boundaries of requested ranges, up to the
// advanced-to position (inclusive).
progress advance_to(position_in_partition_view pos, tombstone new_tombstone) {
position_in_partition::less_compare less(_schema);
range_tombstones rts;
auto prev_tombstone = _tombstone;
_tombstone = new_tombstone;
do {
if (!_in_current && less(pos, _current_start)) {
break;
}
if (!_in_current && prev_tombstone) {
rts.push_back(range_tombstone_change(_current_start, prev_tombstone));
}
// All subsequent clustering keys are larger than the start of this
// range so there is no need to check that again.
_in_current = true;
if (less(pos, _current_end)) {
if (prev_tombstone != new_tombstone) {
rts.push_back(range_tombstone_change(pos, new_tombstone));
}
return progress{.contained = true, .rts = std::move(rts)};
} else {
if (!_past_current && prev_tombstone) {
rts.push_back(range_tombstone_change(_current_end, {}));
}
_past_current = true;
}
} while (advance_to_next_range());
return progress{.contained = false, .rts = std::move(rts)};
}
// Returns true if the range expressed by start and end (as in position_range) overlaps
// with clustering ranges.
// Must be called with monotonic start position. That position must also be greater than
// the last position passed to the other advance_to() overload.
// Idempotent.
// Breaks the tracking of current range tombstone, so don't use if you also use the advance_to()
// overload which tracks tombstones.
bool advance_to(position_in_partition_view start, position_in_partition_view end) {
position_in_partition::less_compare less(_schema);
do {
if (!less(_current_start, end)) {
break;
}
if (less(start, _current_end)) {
return true;
}
} while (advance_to_next_range());
return false;
}
// Returns true if the range tombstone expressed by start and end (as in position_range) overlaps
// with clustering ranges.
// No monotonicity restrictions on argument values across calls.
// Does not affect lower_bound().
// Idempotent.
bool contains_tombstone(position_in_partition_view start, position_in_partition_view end) const {
position_in_partition::less_compare less(_schema);
if (_trim && !less(*_trim, end)) {
return false;
}
for (const auto& rng : _current_range) {
auto range_start = position_in_partition_view::for_range_start(rng);
if (!less(range_start, end)) {
return false;
}
auto range_end = position_in_partition_view::for_range_end(rng);
if (less(start, range_end)) {
return true;
}
}
return false;
}
// Intersects rt with query ranges. The first overlap is returned and the rest is applied to dst.
// If returns a disengaged optional, there is no overlap and nothing was applied to dst.
// No monotonicity restrictions on argument values across calls.
// Does not affect lower_bound().
std::optional<range_tombstone> split_tombstone(range_tombstone rt, range_tombstone_stream& dst) const {
position_in_partition::less_compare less(_schema);
if (_trim && !rt.trim_front(_schema, *_trim)) {
return std::nullopt;
}
std::optional<range_tombstone> first;
for (const auto& rng : _current_range) {
auto range_start = position_in_partition_view::for_range_start(rng);
auto range_end = position_in_partition_view::for_range_end(rng);
if (!less(rt.position(), range_start) && !less(range_end, rt.end_position())) {
// Fully enclosed by this range.
assert(!first);
return std::move(rt);
}
auto this_range_rt = rt;
if (this_range_rt.trim(_schema, range_start, range_end)) {
if (first) {
dst.apply(std::move(this_range_rt));
} else {
first = std::move(this_range_rt);
}
}
}
return first;
}
tombstone current_tombstone() const {
return _tombstone;
}
void set_tombstone(tombstone t) {
_tombstone = t;
}
// Returns true if advanced past all contained positions. Any later advance_to() until reset() will return false.
bool out_of_range() const {
return !_in_current && !_current_range;
}
// Resets the state of the walker so that advance_to() can be now called for new sequence of positions.
// Any range trimmings still hold after this.
void reset() {
_current_range = _ranges;
_in_current = _with_static_row;
_past_current = false;
_current_start = position_in_partition_view::for_static_row();
_current_end = position_in_partition_view::before_all_clustered_rows();
set_current_positions();
++_change_counter;
if (_trim) {
trim_front(*std::exchange(_trim, {}));
}
}
// Can be called only when !out_of_range()
position_in_partition_view lower_bound() const {
return _current_start;
}
// When lower_bound() changes, this also does
// Always > 0.
size_t lower_bound_change_counter() const {
return _change_counter;
}
};