forked from JeffersonLab/SBS-offline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MPDModule.cxx
839 lines (672 loc) · 31.6 KB
/
MPDModule.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/////////////////////////////////////////////////////////////////////
//
// MPDModule
// This is the MPD module decoder; based on SkeletonModule
// (https://github.com/JeffersonLab/analyzer)
//
// E. Cisbani
// Original Version: 2015/Dec
//
// v5 Version based on documentation by Paulo Musico
// Seamus Riordan
// Aug 31, 2018
//
// v5 Version with online SSP zero supression, based on documentation
// from Ben (DAQ group) which I got from Danning Di.
// Juan Carlos Cornejo <[email protected]> - 2018/10/23
//
/////////////////////////////////////////////////////////////////////
/*
#define MPD_VERSION_TAG 0xE0000000
#define MPD_EVENT_TAG 0x10000000
#define MPD_MODULE_TAG 0x20000000
#define MPD_ADC_TAG 0x30000000
#define MPD_HEADER_TAG 0x40000000
#define MPD_DATA_TAG 0x0
#define MPD_TRAILER_TAG 0x50000000
*/
// #define SSP_DATADEF(b) ((b&0x80000000)>>31)
// #define SSP_TAG(b) ((b&0x78000000)>>27)
// #define SSP_SAMPLE(b,c) ((b>>c)&0xFFF)|(((b>>c)&0x1000)?0xFFFFF000:0x0)
#include "MPDModule.h"
#include "THaSlotData.h"
#include "THaCrateMap.h"
#include <limits>
#include <vector>
#include <map>
#include <set>
#include <iostream>
using namespace std;
namespace Decoder {
Module::TypeIter_t MPDModule::fgThisType =
DoRegister( ModuleType( "Decoder::MPDModule" , 3561 ));
MPDModule::MPDModule(Int_t crate, Int_t slot) : VmeModule(crate, slot) {
fDebugFile=nullptr;
Init(); //Should this be called here? not clear...
}
MPDModule::~MPDModule() {
}
void MPDModule::Init() {
VmeModule::Init();
// Config(0,25,6,16,128); // should be called by the user (but how?)
fDebugFile=nullptr;
Clear();
// fName = "MPD Module (INFN MPD for GEM and more), use Config to dynamic config";
fName = "MPD Module";
fOnlineZeroSuppression = false; //If this is false, then we want to calculate and subtract the common-mode from each ADC sample:
fBlockHeader = 0; //0000 = 0
fBlockTrailer = 1; //0001 = 1
fEventHeader = 2; //0010 = 2
fTriggerTime = 3; //0011 = 3
fMPDFrameHeader = 5; //0101 = 5
fMPDEventInfo = 12; //1100 = 12
fMPDDebugHeader = 13; //1101 = 13
fDataNotValid = 14; //1110 = 14
fFillerWord = 15; //1111 = 15
// fAPVHeader = 0x4;
fSLOTID_VTP = 11;
fNumSample = 6;
fChan_CM_flags = 640; //reference channel for common-mode and zero suppression flags
fChan_TimeStamp_low = 641;
fChan_TimeStamp_high = 642;
fChan_MPD_EventCount = 643;
fChan_MPD_Debug = 644;
}
void MPDModule::Init( const char *configstr ) { //parse (optional) configuration parameters:
Init();
//allow users to configure the various dummy/reference channels via the crate map:
vector<ConfigStrReq> req = { {"chan_cmflags", fChan_CM_flags},
{"chan_timestamp_low", fChan_TimeStamp_low},
{"chan_timestamp_high", fChan_TimeStamp_high},
{"chan_event_count", fChan_MPD_EventCount},
{"chan_MPD_debug", fChan_MPD_Debug} };
ParseConfigStr(configstr, req);
assert( fChan_CM_flags < THaCrateMap::MAXCHAN );
assert( fChan_TimeStamp_low < THaCrateMap::MAXCHAN );
assert( fChan_TimeStamp_high < THaCrateMap::MAXCHAN );
assert( fChan_MPD_EventCount < THaCrateMap::MAXCHAN );
assert( fChan_MPD_Debug < THaCrateMap::MAXCHAN );
}
//This version ASSUMES that there is no online zero suppression, so all 128 APV channels are present in every event!
UInt_t MPDModule::LoadSlot( THaSlotData *sldat, const UInt_t *evbuffer, UInt_t pos, UInt_t len ){
//std::cout << "Calling MPDModule::LoadSlot()... (pos, len) = " << pos << ", " << len << "...";
//AJRP: LoadSlot method for MPD SSP data format to be used in Hall A during the GMN run:
const UInt_t *datawords = &(evbuffer[pos]);
fWordsSeen = 0;
Int_t status;
UInt_t thisword;
UInt_t iword=0;
//Get the slot number for this call to LoadSlot:
UInt_t this_slot = sldat->getSlot();
//UInt_t this_crate = sldat->getCrate();
//UInt_t mask, shift;
UInt_t slot=MAXSLOT+1, apv_id=0, apv_chan=0, fiber=0;
//UInt_t mpd_id=0, apv_chan_40, apv_chan65;
//UInt_t prev_slot=0;
UInt_t effChan=0;
//UInt_t effChan_old = MAXCHAN+1; //set "old" effective channel to something impossible so that the first channel will always trigger "loading" of the cm_flags:
//The use of a map here insures that the cm_flags will only be "loaded" into the "slot" once per APV card:
std::map<UInt_t, UInt_t> cm_flags_vs_chan; //key = "effective channel", mapped value = common-mode flags (and possibly other information)
std::map<UInt_t, UInt_t> TimeStampL_vs_fiber; //least significant 24 bits of time stamp
std::map<UInt_t, UInt_t> TimeStampH_vs_fiber; //most significant 24 bits of time stamp
std::map<UInt_t, UInt_t> EventCount_vs_fiber; //20-bit "event count" variable:
std::map<UInt_t, std::vector<UInt_t> > MPDdebugInfo_vs_chan; //TBD: key = effective channel, mapped value = vector of (3) data words encoding calculated common-mode corrections for six time samples:
UInt_t TIMESTAMP_LO = 0, TIMESTAMP_HI=0, EVENT_COUNT=0;
UInt_t eventinfo_wordcount=0;
bool CM_OR=false;
bool ENABLE_CM=false;
bool BUILD_ALL_SAMPLES=true;
bool is_SSP = false; //assume VTP by default which only has the MPD data, no block header/trailer.
bool found_this_slot = false;
bool found_MPD_header = false;
UInt_t mpd_strip_count = 0;
UInt_t mpd_word_count = 0;
//UInt_t old_type_tag=16;
UInt_t type_tag=16; //intialize to something that is NOT one of the recognized data types
//following the MPDRawParser in ROOT_GUI_multicrate, loop on all the data in the ROC bank (which corresponds to one "crate"), and populate the
//temporary data structure above, ONLY if slot == this_slot
// Since all the data from one slot is (or should be) in a contiguous block, we should
//temporary storage for information needed to store "strip hits"
//UInt_t
UInt_t ADCsamples[fNumSample]; //temporary storage for ADC time samples. will this compile? Hope so...
UInt_t hitwords[3]; //temporary storage for the three words needed to extract the information for one "hit"
UInt_t CMwordcount = 0;
UInt_t CMwords[3]; //temporary storage for the three words containing the common-mode values for the six time samples of an APV:
while( iword < len ){
thisword = datawords[iword++];
//check whether this is a data-type defining or data-type continuation word:
UInt_t word_type = (thisword & 0x80000000)>>31;
if( word_type == 1 ){ //data-type defining: extract data type from bits 30-27:
//old_type_tag = type_tag;
type_tag = (thisword & 0x78000000)>>27;
//std::cout << "Data-type defining word, type tag, fBlockHeader = " << type_tag << ", " << fBlockHeader << std::endl;
if( type_tag == fBlockHeader ){ //if we see a block header, this is SSP data:
is_SSP = true;
found_MPD_header = false;
//prev_slot = slot;
//extract "SLOTID" from bits 26-22 and compare to this_slot
slot = (thisword & 0x07C00000)>>22; //7C = 0111 1100
if( slot == this_slot ) found_this_slot = true;
//std::cout << "Found block header, SLOTID = " << slot << std::endl;
}
if( type_tag == fBlockTrailer ){ //end of a block of SSP data. set the is_SSP flag to false unless and until we see another block header word
is_SSP = false; //
found_MPD_header = false;
}
//Question: ask Ben: how would/could we use the trigger time words to correct for APV trigger jitter?
if( type_tag == fMPDFrameHeader ){ //extract "flags", FIBER, and MPD_ID
//TO-DO: figure out how to store this information in the slot data
//(maybe define some arbitrary "dummy" channel to hold this info, as well as trigger time words)
ENABLE_CM = TESTBIT( thisword, 26 );
BUILD_ALL_SAMPLES = TESTBIT(thisword, 25 );
CM_OR = TESTBIT(thisword, 24 );
//NEW firmware to support up to 40 MPDs per VTP
//to extract bits 21-16:
// 0x003F0000 = 0000 0000 0011 1111 0000 0000 0000 0000
//FIBER number was in bits 20-16:
//fiber = (thisword & 0x001F0000)>>16;
//NOW the fiber number is in bits 21-16:
fiber = (thisword & 0x003F0000)>>16;
//MPD ID is in bits 0-4, but we basically ignore it:
//mpd_id = (thisword & 0x0000001F);
found_MPD_header = true;
//now how should we "load" the data into the "slot"?
//Each "hit" in this channel
// UInt_t flags = 2*ENABLE_CM + BUILD_ALL_SAMPLES;
// status = sldat->loadData( fChan_CM_flags, flags, fiber );
// std::cout << "found MPD frame header, fiber, mpd_id, ENABLE_CM, BUILD_ALL_SAMPLES, is_SSP, SLOT, THIS_SLOT = " << fiber << ", " << mpd_id << ", "
// << ENABLE_CM << ", " << BUILD_ALL_SAMPLES << ", "
// << is_SSP << ", " << slot << ", " << this_slot << std::endl;
//reset "word" and "strip" counters:
mpd_word_count = 0;
mpd_strip_count = 0;
if( !is_SSP ) {
slot = fSLOTID_VTP; //always 11
found_this_slot = ( slot == this_slot );
}
}
if( type_tag == fMPDEventInfo ){ //if we see this, next three words give coarse timestamp, fine timestamp, and event counter:
eventinfo_wordcount = 1;
//The lower 16 bits of coarse timestamp and the 8-bit fine timestamp are in
// bits 0-23 of thisword:
TIMESTAMP_LO = thisword & 0x00FFFFFF;
}
if( type_tag == fMPDDebugHeader ){
CMwordcount = 0;
CMwords[CMwordcount] = thisword;
}
} else if( found_this_slot ){
//data-type continuation: behavior depends on type_tag. If the most recently found "slot"
//doesn't match the one that we want, then do nothing.
//For NOW, let's focus mainly on the MPD Frame decoding and worry about anything and everything else later:
if( type_tag == fMPDFrameHeader && found_MPD_header ){ //the data continuation words should come in bundles of three * N, where N is the total number of "hits" (i.e., fired strips) in the MPD:
hitwords[mpd_word_count%3] = thisword; //Set hitwords before incrementing word count
mpd_word_count++; //increment word count;
mpd_strip_count = mpd_word_count/3;
//this should take care of the issue of missing the last "hit":
if( mpd_word_count%3 == 0 && mpd_strip_count > 0 ){ //extract information from the three "hit words" and "load" the data into the "slot":
// load up the ADC samples:
for( int iw=0; iw<3; iw++ ){
// In words: take the bitwise OR of the first 12 bits of hitwords[iw] with 0xFFFFF000 or 0x0
// depending on the value of bit 12 (13th bit) of hitwords[iw].
// This is essentially implementing the two's complement representation of a 13-bit signed integer
ADCsamples[2*iw] = ( hitwords[iw] & 0xFFF ) | ( ( hitwords[iw] & 0x1000 ) ? 0xFFFFF000 : 0x0 );
ADCsamples[2*iw+1] = ( (hitwords[iw]>>13) & 0xFFF ) | ( ( (hitwords[iw]>>13) & 0x1000 ) ? 0xFFFFF000 : 0x0 );
}
//APV_ID is in bits 26-30 of hitword[2]:
// 0x 0111 1100 .... = 0x7C000000
apv_id = (hitwords[2] & 0x7C000000)>>26;
//APV channel num (bits 4:0) is in bits 26:30 of hitword[0];
//APV channel num (bits 6:5) is in bits 26:30 of hitword[1] (but we actually only want bits 26 and 27 AFAIK:
UInt_t apv_chan40 = (hitwords[0] & 0x7C000000) >> 26;
UInt_t apv_chan65 = (hitwords[1] & 0x0C000000) >> 26;
apv_chan = (apv_chan65 << 5) | apv_chan40;
effChan = (fiber << 4) | apv_id;
UInt_t cm_flags = 4*CM_OR + 2*ENABLE_CM + BUILD_ALL_SAMPLES;
cm_flags_vs_chan[effChan] = cm_flags;
for( int is=0; is<6; is++ ){
// if( ADCsamples[is] > 0xFFF && !ENABLE_CM ) {
// std::cout << "negative ADC sample encountered when CM not enabled, raw data word = " << ADCsamples[is] << ", signed int representation = " << Int_t(ADCsamples[is]) << std::endl;
// std::cout << "This is not expected" << std::endl;
// }
// This loads each of the six ADC samples as a new "hit" into sldat, with "effChan" as the unique "channel" number,
// the ADC samples as the "data", and the APV channel number as the "rawData"
// std::cout << "decoded one strip hit: (crate, slot, fiber, apv_id, apv_chan, effChan, isample, ADCsamples[isample]) = ("
// << sldat->getCrate() << ", " << slot << ", " << fiber << ", " << apv_id << ", " << apv_chan << ", " << effChan << ", "
// << is << ", " << int(ADCsamples[is]) << ")" << std::endl;
//Since we need only two bits to encode the ENABLE_CM and BUILD_ALL_SAMPLES flags, we can
status = sldat->loadData( "adc", effChan, ADCsamples[is], apv_chan );
if( status != SD_OK ) return -1;
}
}
}
if( type_tag == fMPDEventInfo && found_MPD_header ){
if( eventinfo_wordcount == 1 ){ //upper 24 bits of the coarse timestamp:
TIMESTAMP_HI = thisword & 0x00FFFFFF;
eventinfo_wordcount++;
} else if( eventinfo_wordcount == 2 ){
// event counter is in the first 20 bits:
EVENT_COUNT = thisword & 0x000FFFFF;
//fill map with most recently reported MPD fiber number as the key:
TimeStampL_vs_fiber[fiber] = TIMESTAMP_LO;
TimeStampH_vs_fiber[fiber] = TIMESTAMP_HI;
EventCount_vs_fiber[fiber] = EVENT_COUNT;
eventinfo_wordcount = 0;
}
}
if( type_tag == fMPDDebugHeader && found_MPD_header ){
CMwordcount++;
CMwords[CMwordcount%3] = thisword;
if( CMwordcount == 2 ){
MPDdebugInfo_vs_chan[effChan].clear();
for( int iw=0; iw<3; iw++ ){
MPDdebugInfo_vs_chan[effChan].push_back( CMwords[iw] );
}
}
}
}
fWordsSeen++;
}
//std::cout << "Loading common-mode flags for this event: " << std::endl;
//now load the cm flags:
for( auto iapv = cm_flags_vs_chan.begin(); iapv != cm_flags_vs_chan.end(); ++iapv ){
//std::cout << "effChan = " << iapv->first << ", ENABLE_CM = " << (iapv->second / 2) << ", BUILD_ALL_SAMPLES = " << (iapv->second % 2 ) << std::endl;
//The "flags" word is the mapped value (iapv->second)
//The effective channel is the key (iapv->first)
sldat->loadData( fChan_CM_flags, iapv->second, iapv->first );
}
//It is ASSUMED that time stamp low, time stamp high, and event count
for( auto ifiber = TimeStampL_vs_fiber.begin(); ifiber != TimeStampL_vs_fiber.end(); ++ifiber ){
UInt_t fiber = ifiber->first;
sldat->loadData( fChan_TimeStamp_low, TimeStampL_vs_fiber[fiber], fiber );
sldat->loadData( fChan_TimeStamp_high, TimeStampH_vs_fiber[fiber], fiber );
sldat->loadData( fChan_MPD_EventCount, EventCount_vs_fiber[fiber], fiber );
}
//Now loop over all APVs seen in the data and load the MPD debug headers into the appropriate dummy channel:
for( auto iapv = MPDdebugInfo_vs_chan.begin(); iapv != MPDdebugInfo_vs_chan.end(); ++iapv ){
UInt_t chan = iapv->first;
for( UInt_t iw=0; iw<MPDdebugInfo_vs_chan[chan].size(); iw++ ){
sldat->loadData( fChan_MPD_Debug, MPDdebugInfo_vs_chan[chan][iw], chan );
}
}
//std::cout << "Finished MPDModule::LoadSlot, fWordsSeen = " << fWordsSeen << std::endl;
//std::cout << "MPDModule::LoadSlot done." << std::endl;
return fWordsSeen;
}
//
// UInt_t MPDModule::LoadSlot( THaSlotData *sldat, const UInt_t* evbuffer, UInt_t pos, UInt_t len) {
// const UInt_t *p = &evbuffer[pos];
// //UInt_t data;
// fWordsSeen = 0;
// // From stand alone decoder
// // We declare an effective channel from the MPD ID
// // and ADC channel
// Int_t ch, status;
// Int_t mpdID = -1;
// Int_t adcCh = -1;
// Int_t effCh = 0;
// UInt_t data_count = 0;
// // v5 decoder (with SSP online zero suppression)
// UInt_t ii,jj,kk,mm; // loop indices: ii (event), jj(word), kk(mpd), mm (block)
// UInt_t thesewords;
// UInt_t hit[3] = {0};
// UInt_t sample_dat[6] = {0U};
// jj = 0;
// while( jj < len ){
// mm = jj;
// thesewords = p[jj++];
// //printf("===============================================================================\n");
// //printf("= CRATE %d ====== SLOT %d =======================================\n", fCrate, fSlot);
// //printf("BLOCK HEADER 0x%08x\n", thesewords);
// //printf("Data defining? (1) %d\n", (thesewords & 0x80000000) >> 31);
// //printf("Type (0) %d\n", (thesewords & 0x78000000) >> 27);
// //printf("BLOCK NUMBER %d\n", (thesewords & 0x0003FF00) >> 8 );
// //printf("EVENT_PER_BLOCK %d\n", (thesewords & 0x000000FF) >> 0 );
// //printf("\n");
// if( (SSP_DATADEF(thesewords) != 1) || (SSP_TAG(thesewords) != 0 )) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] "
// "BLOCK HEADER NOT FOUND\n", __LINE__);
// return -1;
// }
// UInt_t nevent = (thesewords&0xFF);
// // Ensure we have enough data
// // (need at least 4 per event: 1 event header + 2 trigger words +
// // 1 event trailer
// if( nevent > 0 && jj + (nevent*4) >= len) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] "
// "NOT ENOUGH WORDS TO DECODE THIS EVENT!\n", __LINE__);
// return -1;
// }
// for( ii = 0; ii < nevent; ii++ ){
// thesewords = p[jj++];
// //printf("EVENT HEADER 0x%08x\n", thesewords);
// //printf("Data defining? (1) %d\n", (thesewords & 0x80000000) >> 31);
// //printf("Type (2) %d\n", (thesewords & 0x78000000) >> 27);
// //printf("EVENT COUNT %d\n", (thesewords & 0x3FFFFF) >> 0);
// //printf("\n");
// if( (SSP_DATADEF(thesewords) != 1) || (SSP_TAG(thesewords) != 2 )) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] EVENT HEADER NOT FOUND\n", __LINE__);
// return -1;
// }
// thesewords = p[jj++] & 0xFFFFFFFF;
// //printf("TRIGGER TIME 1 0x%08x\n", thesewords);
// //printf("Data defining? (1) %d\n", (thesewords & 0x80000000) >> 31);
// //printf("Type (3) %d\n", (thesewords & 0x78000000) >> 27);
// //printf("COURSE TIME %d\n", (thesewords & 0xFFFFFF) >> 0);
// //printf("\n");
// if( (SSP_DATADEF(thesewords) != 1) || (SSP_TAG(thesewords) != 3 )) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] TRIGGER TIME 1 WORD NOT FOUND\n", __LINE__);
// return -1;
// }
// thesewords = p[jj++] & 0xFFFFFFFF;
// //printf("TRIGGER TIME 2 %08x\n", thesewords);
// //printf("Data defining? (0) %d\n", (thesewords & 0x80000000) >> 31);
// //printf("COURSE TIME %d\n", (thesewords & 0xFFFFFF) >> 0);
// //printf("\n");
// if( (SSP_DATADEF(thesewords) != 0) ) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] TRIGGER TIME 2 WORD NOT FOUND\n", __LINE__);
// return -1;
// }
// // Loop through all MPD fiber headers
// while( (p[jj]&0xF8000000)>>27 == 0x15 ) {
// // First word defines the tag type 5, and the MPD ID (fiber number)
// kk = 0;
// //printf("\n[Starting sample %d]\n", kk);
// thesewords = p[jj++];
// //printf("MPD HEADER 0x%08x\n", thesewords);
// //printf("Data defining? (1) %d\n", (thesewords & 0x80000000) >> 31);
// //printf("Type (5) %d\n", (thesewords & 0x78000000) >> 27);
// //printf("MPD Fiber Number %d\n", (thesewords & 0x0000001F) >> 0 );
// //printf("\n");
// mpdID = thesewords & 0x1F;
// // Now loop through each of the APV hits in this MPD
// while( SSP_DATADEF(p[jj]) != 1) {
// // For each one of these, we must have at least 3 more
// // words preceeding
// if(jj+2>=len) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] NOT ENOUGH"
// " WORDS TO DECODE APV HITS for MPD %d\n", __LINE__,
// mpdID);
// return -1;
// }
// //printf("samples: ");
// for(int h = 0; h < 3; h++) {
// hit[h] = p[jj++];
// // The samples are stored as 13-bit signed int
// // This needs to be converted back to typical 32-bit signed int
// sample_dat[h*2] = SSP_SAMPLE(hit[h],0);
// sample_dat[h*2+1] = SSP_SAMPLE(hit[h],13);
// if(SSP_DATADEF(hit[h]) != 0) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] MISSING"
// " APV_HIT_WORD%d for APV_HIT%d of MPD=%d, word=0x%x\n", __LINE__,
// h,kk,mpdID,hit[h]);
// return -1;
// }
// //printf(" %d %d", sample_dat[h*3], sample_dat[h*3+1]);
// }
// //printf("APV HIT0 0x%08x\n", hit[0]);
// //printf("Data defining? (0) %d\n", (hit[0] & 0x80000000) >> 31);
// //printf("APV_CH(b4:b0) 0x%x\n", (hit[0] & 0x7C000000) >> 26 );
// //printf("ADC_SAMP_T1 %d\n", (hit[0] & 0x3FFE000) >> 13 );
// //printf("ADC_SAMP_T0 %d\n", (hit[0] & 0x1FFF) >> 0 );
// //printf("APV HIT1 0x%08x\n", hit[1]);
// //printf("Data defining? (0) %d\n", (hit[1] & 0x80000000) >> 31);
// //printf("APV_CH(b6:b5) 0x%x\n", (hit[1] & 0xC000000) >> 26 );
// //printf("ADC_SAMP_T3 %d\n", (hit[1] & 0x3FFE000) >> 13 );
// //printf("ADC_SAMP_T2 %d\n", (hit[1] & 0x1FFF) >> 0 );
// //printf("APV HIT2 0x%08x\n", hit[2]);
// //printf("Data defining? (0) %d\n", (hit[2] & 0x80000000) >> 31);
// //printf("APV ID %d\n", (hit[2] & 0x7C000000) >> 26 );
// //printf("ADC_SAMP_T5 %d\n", (hit[2] & 0x3FFE000) >> 13 );
// //printf("ADC_SAMP_T4 %d\n", (hit[2] & 0x1FFF) >> 0 );
// //printf("\n");
// // Now decode the hit info
// // Strip number (APV25 channel number)
// adcCh = (hit[2]&0x7C000000)>>26;
// ch = ((hit[0]&0x7C000000)>>26) | ((hit[1]&0xC000000)>>21);
// effCh = (mpdID) << 8 | adcCh;
// for(int s = 0; s < 6; s++) {
// // the raw data will be the strip number
// status = sldat->loadData("adc",effCh, sample_dat[s], ch);
// if( status != SD_OK ) return -1;
// fWordsSeen++;
// data_count++;
// }
// kk++;
// } // apv_hit loop
// } // mpd loop
// } //event loop
// // Loop over the filler words
// while(p[jj] == 0xF8000000) {
// //printf("FILLER WORD: 0x%08x\n",p[jj]);
// jj++;
// }
// // Finally, we should have the BLOCK trailer
// thesewords = p[jj++];
// //printf("BLOCK TRAILER 0x%08x\n", thesewords);
// //printf("Data defining? (1) %d\n", (thesewords & 0x80000000) >> 31);
// //printf("Type (1) %d\n", (thesewords & 0x78000000) >> 27);
// //printf("NUMBER_OF_WORDS %d\n", (thesewords & 0x003FFFFF) >> 0 );
// //printf("\n");
// if( (SSP_DATADEF(thesewords) != 1) || (SSP_TAG(thesewords) != 1 )) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] "
// "BLOCK TRAILER NOT FOUND\n", __LINE__);
// return -1;
// }
// //printf("Read number of words %d expected %d\n",jj-mm,thesewords&0x3FFFFF);
// if((thesewords&0x3FFFFF) != (jj-mm) ) {
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] NUMBER OF "
// "WORDS READ %d DOES NOT MATCH NUMBER EXPECTED %d\n", __LINE__,
// jj-mm,thesewords&0x3FFFFF);
// return -1;
// };
// } // block loop
// /*
// // v5 decoder (with no SSP zero suppression)
// int ii,jj,kk,ll;
// int thesewords;
// jj = 0;
// while( jj < len ){
// thesewords = p[jj++] & 0xFFFFFF;
// //printf("===============================================================================\n");
// //printf("= CRATE %d ====== SLOT %d =======================================\n", fCrate, fSlot);
// //printf("BLOCK HEADER %06x\n", thesewords);
// //printf("Good? (0) %x\n", (thesewords & 0xe00000) >> 21);
// //printf("Module ID %d\n", (thesewords & 0x1F0000) >> 16 );
// //printf("EVENT_PER_BLOCK %d\n", (thesewords & 0x00FF00) >> 8 );
// //printf("BLOCK COUNT %d\n", (thesewords & 0x0000FF) >> 0);
// if( (thesewords & 0xe00000) >> 21 != 0 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] BLOCK HEADER NOT FOUND\n", __LINE__);
// return -1;
// }
// mpdID = (thesewords & 0x1F0000) >> 16;
// int nevent = (thesewords & 0x00FF00) >> 8;
// for( ii = 0; ii < nevent; ii++ ){
// thesewords = p[jj++] & 0xFFFFFF;
// //printf("EVENT HEADER %06x\n", thesewords);
// //printf("Good? (4) %x\n", (thesewords & 0xF00000) >> 20);
// //printf("EVENT COUNT %d\n", (thesewords & 0x0FFFFF) >> 0);
// if( (thesewords & 0xF00000) >> 20 != 0x4 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] EVENT HEADER NOT FOUND\n", __LINE__);
// return -1;
// }
// thesewords = p[jj++] & 0xFFFFFF;
// //printf("TRIGGER TIME 1%06x\n", thesewords);
// //printf("Good? (6) %x\n", (thesewords & 0xF00000) >> 20);
// //printf("COURSE TIME %d\n", (thesewords & 0x0FFFFF) >> 0);
// if( (thesewords & 0xF00000) >> 20 != 0x6 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] TRIGGER TIME 1 WORD NOT FOUND\n", __LINE__);
// return -1;
// }
// thesewords = p[jj++] & 0xFFFFFF;
// //printf("TRIGGER TIME 2%06x\n", thesewords);
// //printf("Good? (7) %x\n", (thesewords & 0xF00000) >> 20);
// //printf("COURSE TIME %d\n", (thesewords & 0x0FFFFF) >> 0);
// if( (thesewords & 0xF00000) >> 20 != 0x7 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] TRIGGER TIME 2 WORD NOT FOUND\n", __LINE__);
// return -1;
// }
// kk = 0;
// while( ((p[jj] & 0xE00000) >> 21 ) == 0x4 ){
// kk++;
// //printf("\n[Starting sample %d]\n", kk);
// thesewords = p[jj++] & 0x1FFFFF;
// adcCh = thesewords & 0x00000F;
// //printf("HEADER %06x\n", thesewords);
// //printf("Headergood? (0) %x\n", (thesewords & 0x1C0000) >> 18);
// //printf("Baselineval %x\n", (thesewords & 0x020000) >> 17);
// //printf("APV HEADER %x\n", (thesewords & 0x01FFF0) >> 4);
// //printf("APV ID %x\n", (thesewords & 0x00000F) >> 0);
// if( (thesewords & 0x1C0000) >> 18 != 0x0 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] DATA HEADER NOT FOUND\n", __LINE__);
// return -1;
// }
// // Loop while still seeing reduced data
// while( ((p[jj] & 0x180000) >> 19) == 0x1 ){
// for( ll = 0; ll < 8; ll++ ){
// if( ((p[jj] & 0x180000) >> 19) != 0x1 ){
// break;
// }
// // printf("%08x ", p[jj++]);
// int x_data = p[jj++];
// data = x_data& 0x00FFF;
// ch = (x_data& 0x7F000)>>12;
// //printf("%3d %03x ", ch, data);
// // Otherwise we have data
// effCh = (mpdID) << 8 | adcCh;
// status = sldat->loadData("adc",effCh, data, data);
// if( status != SD_OK ) return -1;
// fWordsSeen++;
// data_count++;
// }
// //printf("\n");
// }
// thesewords = p[jj++] & 0x1FFFFF;
// //printf("APV TRAILER %06x\n", thesewords);
// //printf("Good? (8) %x\n", (thesewords & 0x1E0000) >> 17);
// //printf("Module ID %x\n", (thesewords & 0x01F000) >> 12);
// //printf("Sample Count %x\n", (thesewords & 0x000F00) >> 8);
// //printf("Frame Counter %x\n", (thesewords & 0x0000FF) >> 0);
// if( (thesewords & 0x1E0000) >> 17 != 0x8 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] APV TRAILER NOT FOUND\n", __LINE__);
// return -1;
// }
// thesewords = p[jj++] & 0x1FFFFF;
// //printf("TRAILER %06x\n", thesewords);
// //printf("Good? (3) %x\n", (thesewords & 0x180000) >> 19);
// //printf("Baseline val %x\n", (thesewords & 0x07FF00) >> 8);
// //printf("Word count %x\n", (thesewords & 0x0000FF) >> 0);
// if( (thesewords & 0x180000) >> 19 != 0x3 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] DATA TRAILER NOT FOUND\n", __LINE__);
// return -1;
// }
// }
// //printf("[ %d SAMPLES ]\n", kk);
// thesewords = p[jj++] & 0xFFFFFF;
// //printf("EVENT TRAILER %06x\n", thesewords);
// //printf("Good? (a) %x\n", (thesewords & 0xF00000) >> 20);
// //printf("N WORDS IN EVT %d\n", (thesewords & 0x0FFF00) >> 8);
// //printf("FINE TRIGGER T %d\n", (thesewords & 0x0000FF) >> 0);
// if( (thesewords & 0xF00000) >> 20 != 0xa ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] EVENT TRAILER NOT FOUND\n", __LINE__);
// return -1;
// }
// }
// // Filler words to end
// thesewords = p[jj++] & 0xFFFFFF;
// while( thesewords == 0xe00000 ){
// thesewords = p[jj++] & 0xFFFFFF;
// }
// //printf("BLOCK TRAILER %06x\n", thesewords);
// //printf("Good? (2) %x\n", (thesewords & 0xF00000) >> 20);
// //printf("NWORDS IN BLOCK %d\n", (thesewords & 0x0FFFFF) >> 0);
// if( (thesewords & 0xF00000) >> 20 != 0x2 ){
// fprintf(stderr, "[ERROR MPDModule::LoadSlot, line %d] BLOCK TRAILER NOT FOUND\n", __LINE__);
// return -1;
// }
// }
// */
// //printf("================= END !!! =================================\n");
// /*
// v4 decoder
// for( Int_t i = 0; i < len; i++ ){
// tag = p[i] & 0xf0000000;
// switch(tag) {
// case MPD_MODULE_TAG:
// cout <<"Module TAG"<<endl;
// mpdID = p[i] & 0xffff;
// break;
// case MPD_ADC_TAG:
// cout <<"ADC TAG"<<endl;
// adcCh = p[i] & 0xff;
// break;
// case MPD_HEADER_TAG:
// cout <<"HEADER TAG"<<endl;
// header = (p[i] >> 4) & 0x1ff;
// // This is following the decoder I got from Evaristo
// // It doesn't seem to match the data I have
// //if( (header & 0xe00) != 0xe00 ){
// // APV interal memory error in header decoding
// // fprintf(stderr, "MPDModule::LoadSlot Warning: APV memory corruption 0x%03x\n", header );
// // return -1;
// //}
// break;
// case MPD_TRAILER_TAG:
// cout <<"TRAILER TAG"<<endl;
// // Not sure if this is useful to save
// trailer = p[i] & 0xfff;
// if( (data_count % 16) != 0 ){
// // Missing data
// fprintf(stderr, "MPDModule::LoadSlot Warning: Missing data?\n");
// return -1;
// }
// data_count = 0;
// break;
// case MPD_DATA_TAG:
// cout <<"DATA TAG"<<endl;
// // Not sure if this is useful to save
// data = p[i] & 0xfff;
// ch = (p[i] >> 12) & 0x7f;
// // Otherwise we have data
// effCh = (mpdID) << 8 | adcCh;
// if( fDebugFile ){
// *fDebugFile << hex << "raw ev buff "<< mpdID << " " << adcCh <<" "<< p[i] <<endl;
// }
// status = sldat->loadData("adc",effCh, data, data);
// if( status != SD_OK ) return -1;
// fWordsSeen++;
// data_count++;
// break;
// default:
// // Bad tag
// fprintf(stderr, "MPDModule::LoadSlot Warning: Bad Tag 0x%08x\n", tag);
// return -1;
// }
// }
// */
// return fWordsSeen;
// }
// //Unclear if these are used by anything: comment for now (AJRP)
UInt_t MPDModule::GetData( UInt_t adc, UInt_t sample, UInt_t chan) const {
// printf("MPD GET DATA\n");
// UInt_t idx = asc2i(adc, sample, chan);
// if (idx >= fNumChan*fNumSample*fNumADC) { return 0; }
// return fData[idx];
return 0;
}
void MPDModule::Clear(const Option_t* opt) {
VmeModule::Clear(opt);
// fNumHits = 0;
// for (Int_t i=0; i<fNumChan*fNumSample*fNumADC; i++) fData[i]=0;
// for (Int_t i=0; i<fNumADC*fNumSample; i++) {
// fFrameHeader[i]=0;
// fFrameTrailer[i]=0;
// }
}
Int_t MPDModule::Decode(const UInt_t *pdat) {
//Doesn't do anything. I suppose that's fine for now?
return 0;
}
}
ClassImp(Decoder::MPDModule)