-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec3.h
executable file
·161 lines (123 loc) · 4.14 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#ifndef VEC3_H
#define VEC3_H
#include <cmath>
#include <iostream>
using std::sqrt;
using std::fabs;
// Will be using double cause low end specs
class vec3 {
public:
vec3() : e{0,0,0} {} //creating vec3 constructor for a vector e...
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {} //initializing vec3 constructor telling it to take doubleed vector parameters from vector e
double x() const { return e[0]; } //for x return position 0 e vector
double y() const { return e[1]; } //for y return position 1 e vector
double z() const { return e[2]; } //for z return position 2 e vector
//now they correspond to a classical 3D system.
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); } //defining when using operator- so the negative value in each x y z to be returned
double operator[](int i) const { return e[i]; } //when using operator[] define it as array with position i.
double& operator[](int i) { return e[i]; } //when using operator[] with memory reference, return array value of position i.
vec3& operator+=(const vec3 &v) { //when using operator+= on memory referenced vector v
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(const double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/=(const double t) {
return *this *= 1/t;
}
double length() const { //calculating vector length
return sqrt(length_squared());
}
double length_squared() const { //vector length squared
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
inline static vec3 random() {
return vec3(random_double(), random_double(), random_double());
}
inline static vec3 random(double min, double max) {
return vec3(random_double(min,max), random_double(min,max), random_double(min,max));
}
bool near_zero() const {
// Return true if the vector is close to zero in all dimensions.
const auto s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
public:
double e[3];
};
// Type aliases for vec3
using point3 = vec3; //3D point
using color = vec3; //RGB color
// vec3 Utility Functions
//making operator<< outputting vector correctly from memory reference
inline std::ostream& operator<<(std::ostream &out, const vec3 &v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
//just simple vector addition on vectors in memory reference
inline vec3 operator+(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
//vector substraction
inline vec3 operator-(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3 &v) {
return vec3(t*v.e[0], t*v.e[1], t*v.e[2]);
}
inline vec3 operator*(const vec3 &v, double t) {
return t * v;
}
inline vec3 operator/(vec3 v, double t) {
return (1/t) * v;
}
//dotproduct
inline double dot(const vec3 &u, const vec3 &v) {
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
//crossproduct
inline vec3 cross(const vec3 &u, const vec3 &v) {
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unit_vector(vec3 v) {
return v / v.length();
}
vec3 random_in_unit_sphere() {
while(true) {
auto p = vec3::random(-1,1);
if (p.length_squared() >= 1) continue;
return p;
}
}
vec3 random_unit_vector() {
return unit_vector(random_in_unit_sphere());
}
vec3 reflect(const vec3& v, const vec3& n) {
return v - 2*dot(v,n)*n;
}
vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat) {
auto cos_theta = fmin(dot(-uv, n), 1.0);
vec3 r_out_perp = etai_over_etat * (uv + cos_theta*n);
vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.length_squared())) * n;
return r_out_perp + r_out_parallel;
}
vec3 random_in_unit_disk() {
while (true) {
auto p = vec3(random_double(-1,1), random_double(-1,1), 0);
if (p.length_squared() >= 1) continue;
return p;
}
}
#endif