-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheda2.Rmd
184 lines (141 loc) · 4.65 KB
/
eda2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
---
title: "Feature Selection"
author: "Mohanapriya Singaravelu"
date: "24/04/2022"
output: html_document
---
```{r}
library(dplyr)
library(ggplot2)
library(corrplot)
library(mltools)
library(caret)
library(caTools)
library(caretEnsemble)
```
Import the dataset
```{r}
df = read.csv("Churn_Modelling.csv")
head(df)
glimpse(df)
notRequired = c(1,2,3)
df1 = df[-notRequired]
head(df1)
num_cols <- unlist(lapply(df1, is.numeric))
numData <- df1[ , num_cols]
numData = data.frame(numData)
res = cor(numData)
res
```
```{r}
run_models = function(thres){
columns= c("Model.Name","Accuracy")
results = data.frame(matrix(nrow = 0, ncol = length(columns)))
colnames(results) = columns
models = c("Logistic Regression", "Bagged Decision Tree", "Random Forest","Boosting", "Stacking")
acc = c()
acCount = 1
rejected = c()
count = 1
for (i in 1:nrow(res)){
if (abs(res[i,9])<thres){
rejected[count] = colnames(res)[i]
count = count+1
}
}
dummy <- dummyVars(" ~ .", data=df1)
df2 <- data.frame(predict(dummy, newdata=df))
colnames(df2)[2] = "France"
colnames(df2)[3] = "Germany"
colnames(df2)[4] = "Spain"
colnames(df2)[5] = "Male"
colnames(df2)[6] = "Female"
df2$Exited = as.factor(df2$Exited)
levels(df2$Exited) <- c("yes", "no")
head(df2)
#Select columns based on correlation values
reject = c()
count = 1
for(x in rejected){
reject[count] = which(colnames(df2)==x)
count = count+1
}
df2 = df2[-reject]
head(df2)
#Test train split
set.seed(100)
sample <- sample.int(n = nrow(df2), size = floor(.75*nrow(df2)), replace = F)
train <- df2[sample, ]
test <- df2[-sample, ]
#Base model - logistic regression.
model_glm = glm(Exited ~ . , family="binomial", data = train)
#Predictions on the test set
y_pred1 = predict(model_glm, newdata = test, type = "response")
# Confusion matrix on test set
cm = table(test$Exited, y_pred1 >= 0.5)
c = data.frame(cm)
correct = c$Freq[1] + c$Freq[4]
base_acc = correct/nrow(test)
acc[acCount] = base_acc
acCount = acCount+1
set.seed(100)
control1 <- trainControl(sampling="rose",method="repeatedcv", number=5, repeats=5)
bagCART_model <- train(Exited ~., data=train, method="treebag", metric="Accuracy", trControl=control1) #treebag denotes bagged decision tree
#Predictions on the test set
y_pred2 = predict(bagCART_model, newdata = test)
# Confusion matrix on test set
cm1 = table(test$Exited, y_pred2)
c1 = data.frame(cm1)
correct1 = c1$Freq[1] + c1$Freq[4]
acc[acCount] = correct1/nrow(test)
acCount = acCount+1
#random forest
set.seed(100)
control2 <- trainControl(sampling="rose",method="repeatedcv", number=5, repeats=5)
rf_model <- train(Exited ~., data=train, method="rf", metric="Accuracy", trControl=control2) #rf denotes random forest
y_pred3 = predict(rf_model, newdata = test, type = "raw")
cm2 = table(test$Exited, y_pred3)
c2 = data.frame(cm2)
correct2 = c2$Freq[1] + c2$Freq[4]
acc[acCount] = correct2/nrow(test)
acCount = acCount+1
set.seed(100)
#Stochastic gradient boosting
control3 <- trainControl(sampling="rose",method="repeatedcv", number=5, repeats=5)
gbm_model <- train(Exited ~., data=train, method="gbm", metric="Accuracy", trControl=control3)
y_pred4 = predict(gbm_model, newdata = test)
cm3 = table(test$Exited, y_pred4)
c3 = data.frame(cm3)
correct3 = c3$Freq[1] + c3$Freq[4]
correct3
acc[acCount] = correct3/nrow(test)
acCount = acCount+1
#stacking
set.seed(100)
control_stacking <- trainControl(method="repeatedcv", number=5, repeats=2, savePredictions=TRUE, classProbs=TRUE)
algorithms_to_use <- c('rpart', 'glm', 'knn', 'svmRadial')
stacked_models <- caretList(Exited ~., data=df2, trControl=control_stacking, methodList=algorithms_to_use)
stacking_results <- resamples(stacked_models)
# stack using glm
stackControl <- trainControl(method="repeatedcv", number=5, repeats=3, savePredictions=TRUE, classProbs=TRUE)
set.seed(100)
glm_stack <- caretStack(stacked_models, method="glm", metric="Accuracy", trControl=stackControl)
print(glm_stack)
acc[acCount] = glm_stack$error$Accuracy
#results$Accuracy = acc
#results$Model.Name = models
results = data.frame(models,acc)
return(results)
}
```
```{r}
thresholds = c(0.01, 0.025, 0.05, 0.1)
#run_models(0.01)
for( i in thresholds){
print("Threshold = ")
print(i)
result = run_models(i)
print(result)
}
```
Threshold value of 0.025 gives the highest accuracy of 85.72% when stacking is done.