forked from vjjan91/eBirdOccupancy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path09_occupancy-models.Rmd
666 lines (534 loc) · 21.6 KB
/
09_occupancy-models.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
---
editor_options:
chunk_output_type: console
---
# Modelling Species Occupancy
### Load necessary libraries
```{r load_libraries, message=FALSE, warning=FALSE}
# Load libraries
# for ebird data
library(auk)
library(ebirdst)
# general data
library(tidyverse)
library(data.table)
library(lubridate)
library(openxlsx)
library(raster) # probably unnecessary
# for models
library(unmarked)
library(MuMIn)
library(AICcmodavg)
library(fields)
# for computation
library(doParallel)
library(snow)
library(ecodist)
# Source necessary functions
source("R/fun_screen_cor.R")
source("R/fun_model_estimate_collection.r")
```
## Load dataframe and prepare covariates
Here, we load the required dataframe that contains 10 random visits to a site and environmental covariates that were prepared at a spatial scale of 2.5 sq.km. We also scaled all covariates (mean around 0 and standard deviation of 1). Next, we ensured that only Traveling and Stationary checklists were considered. Even though stationary counts have no distance traveled, we defaulted all stationary accounts to an effective distance of 100m, which we consider the average maximum detection radius for most bird species in our area.
```{r load_dataframe}
# Load in the prepared dataframe
dat <- fread("data/04_data-covars-2.5km.csv", header = T)
dat <- as_tibble(dat)
head(dat)
```
### Handle the sampling protocol
Select protocol and add 0.1 km to stationary checklists.
```{r handle_protocol}
# Some more pre-processing to get the right data structures
# Ensuring that only Traveling and Stationary checklists were considered
names(dat)
dat <- dat %>% filter(protocol_type %in% c("Traveling", "Stationary"))
# We take all stationary counts and give them a distance of 100 m (so 0.1 km),
# as that's approximately the max normal hearing distance for people doing point
# counts.
dat <- dat %>%
mutate(effort_distance_km = if_else(
effort_distance_km == 0 &
protocol_type == "Stationary",
0.1, effort_distance_km
))
```
### Handle time and date
Convert time and date to julian date and minutes since day.
```{r handle_time_obs_started}
# Converting time observations started to numeric and adding it as a new column
# This new column will be minute_observations_started
dat <-
dat %>%
mutate(
min_obs_started = as.integer(
as.difftime(
time_observations_started,
format = "%H:%M:%S", units = "mins"
)
)
)
# Adding the julian date to the dataframe
dat <- dat %>%
mutate(julian_date = lubridate::yday(observation_date))
# recode julian date to model it as a linear predictor
dat <- dat %>%
mutate(
newjulianDate =
case_when(
(julian_date >= 334 & julian_date) <= 365 ~
(julian_date - 333),
(julian_date >= 1 & julian_date) <= 152 ~
(julian_date + 31)
)
) %>%
drop_na(newjulianDate)
# recode time observations started to model it as a linear predictor
dat <- dat %>%
mutate(
newmin_obs_started = case_when(
min_obs_started >= 300 & min_obs_started <= 720 ~
abs(min_obs_started - 720),
min_obs_started >= 720 & min_obs_started <= 1140 ~
abs(720 - min_obs_started)
)
) %>%
drop_na(newmin_obs_started)
```
### Scaling covariates
```{r select_columns_to_scale}
# Removing other unnecessary columns from the dataframe and creating a clean one without the rest
names(dat)
# select relevant columns BY NAME
dat <- dplyr::select(
dat,
c(
"duration_minutes", "effort_distance_km", "locality",
"locality_type", "locality_id", "observer_id",
"observation_date", "scientific_name", "observation_count",
"protocol_type", "number_observers", "pres_abs"
),
# rename X-Y but NOTE THEY ARE IN UTM COORDINATES
longitude = "X", latitude = "Y",
expertise,
# elevation and climate layers
elev, bio4, bio15,
# all LANDCOVER COLUMNS
matches("lc"),
# set new columns to old column names
julian_date = "newjulianDate",
min_obs_started = "newmin_obs_started"
)
# add year and convert presence-absence to integer
dat.1 <- dat %>%
mutate(
year = year(observation_date),
pres_abs = as.integer(pres_abs)
) # occupancy modeling requires an integer response
# Scaling detection and occupancy covariates
dat.scaled <- dat.1
# Note: Never refer to columns by numbers, numbers change, names remain
cols_to_scale <- c(
"duration_minutes", "effort_distance_km",
"number_observers", "expertise", "elev", "bio4a", "bio15a", "lc_02", "lc_09", "lc_01", "lc_05", "lc_04", "lc_07", "lc_03", "julian_date", "min_obs_started"
)
# this scales the relevant columns between 0 and 1
dat.scaled <- mutate(
dat.scaled,
across(
.cols = all_of(cols_to_scale), # referring to the columns
.fns = scales::rescale # the rescale function
)
)
# save data to file
fwrite(dat.scaled, "data/05_scaled-covars-2.5km.csv")
```
### Correct date format
```{r read_scaled_data}
# Reload the scaled covariate data
dat.scaled <- fread("data/05_scaled-covars-2.5km.csv", header = T)
dat.scaled <- as_tibble(dat.scaled)
head(dat.scaled)
# Ensure observation_date column is in the right format
dat.scaled$observation_date <- format(
as.Date(
dat.scaled$observation_date,
"%m/%d/%Y"
),
"%Y-%m-%d"
)
```
### Check for correlated covariates
```{r test_correlation}
# Testing for correlations before running further analyses
# Majority are uncorrelated since we decided to keep climatic and land cover predictors and removed elevation.
source("R/fun_screen_cor.R")
# SELECT COLUMNS to check BY NAME
cols_to_check <- c(
"expertise", "bio4a", "bio15a", "lc_02",
"lc_09", "lc_01",
"lc_05", "lc_04", "lc_07", "lc_03"
)
# screen covariates for correlation
screen.cor(dat.scaled[, cols_to_check], threshold = 0.3)
# total number of presences by species
# min no. presences = 224 to max = 7725
presSpecies <- dat.scaled %>%
group_by(scientific_name) %>%
filter(pres_abs == "1") %>%
summarise(n = n())
# convert locality_id to factors
dat.scaled$locality_id <- as.factor(dat.scaled$locality_id)
```
## Running a null model
```{r null_model}
# All null models are stored in lists below
all_null <- list()
# define species and a counter
species <- unique(dat.scaled$scientific_name)
counter <- 0
# Add a progress bar for the loop
pb <- txtProgressBar(
min = 0,
max = length(species),
style = 3
) # text based bar
# loop over species
for (i in species) {
# filter data by species
data <- dat.scaled %>%
filter(scientific_name == i)
# Preparing data for the unmarked model
occ <- filter_repeat_visits(data,
min_obs = 1, max_obs = 10,
annual_closure = FALSE,
n_days = 1488, # 7 years is considered a period of closure
date_var = "observation_date",
site_vars = c("locality_id")
)
obs_covs <- c(
"min_obs_started",
"duration_minutes",
"effort_distance_km",
"number_observers",
"expertise",
"julian_date"
)
# format for unmarked
occ_wide <- format_unmarked_occu(occ,
site_id = "site",
response = "pres_abs",
site_covs = c(
"locality_id", "lc_01", "lc_02", "lc_05",
"lc_04", "lc_09", "lc_07", "lc_03", "bio4a", "bio15a"
),
obs_covs = obs_covs
)
# Convert this dataframe of observations into an unmarked object to start fitting occupancy models
occ_um <- formatWide(occ_wide, type = "unmarkedFrameOccu")
# Set up the model
# the list is now automatically named
all_null[[i]] <- occu(~1 ~ 1, data = occ_um)
# increase counter
counter <- counter + 1
setTxtProgressBar(pb, counter)
}
close(pb)
# Store all the model outputs for each species
capture.output(all_null, file = "data/results/null_models.csv")
```
## Identifying covariates necessary to model the detection process
Here, we use the `unmarked` package in R [@fiske2011] to identify detection level covariates that are important for each species. We use AIC criteria to select top models [@burnham2011].
```{r prob_detection}
# All models are stored in lists below
det_dred <- list()
# Subsetting those models whose deltaAIC<4 (Burnham et al., 2011)
top_det <- list()
# Getting model averaged coefficients and relative importance scores
det_avg <- list()
det_imp <- list()
# Getting model estimates
det_modelEst <- list()
# Add a progress bar for the loop
pb <- txtProgressBar(
min = 0,
max = length(unique(dat.scaled$scientific_name)), style = 3
) # text based bar
for (i in 1:length(unique(dat.scaled$scientific_name))) {
data <- dat.scaled %>%
filter(dat.scaled$scientific_name == unique(dat.scaled$scientific_name)[i])
# Preparing data for the unmarked model
occ <- filter_repeat_visits(data,
min_obs = 1, max_obs = 10,
annual_closure = FALSE,
n_days = 1488, # 7 years is considered a period of closure
date_var = "observation_date",
site_vars = c("locality_id")
)
obs_covs <- c(
"min_obs_started",
"duration_minutes",
"effort_distance_km",
"number_observers",
"expertise",
"julian_date"
)
# format for unmarked
occ_wide <- format_unmarked_occu(occ,
site_id = "site",
response = "pres_abs",
site_covs = c(
"locality_id", "lc_01", "lc_02", "lc_05",
"lc_04", "lc_09", "lc_07", "lc_03", "bio4a", "bio15a"
),
obs_covs = obs_covs
)
# Convert this dataframe of observations into an unmarked object to start fitting occupancy models
occ_um <- formatWide(occ_wide, type = "unmarkedFrameOccu")
# Fit a global model with all detection level covariates
global_mod <- occu(~ min_obs_started +
julian_date +
duration_minutes +
effort_distance_km +
number_observers +
expertise ~ 1, data = occ_um)
# Set up the cluster
clusterType <- if (length(find.package("snow", quiet = TRUE))) "SOCK" else "PSOCK"
clust <- try(makeCluster(getOption("cl.cores", 5), type = clusterType))
clusterEvalQ(clust, library(unmarked))
clusterExport(clust, "occ_um")
det_dred[[i]] <- pdredge(global_mod, clust)
names(det_dred)[i] <- unique(dat.scaled$scientific_name)[i]
# Get the top models, which we'll define as those with deltaAICc < 4
top_det[[i]] <- get.models(det_dred[[i]], subset = delta < 4, cluster = clust)
names(top_det)[i] <- unique(dat.scaled$scientific_name)[i]
# Obtaining model averaged coefficients
if (length(top_det[[i]]) > 1) {
a <- model.avg(top_det[[i]], fit = TRUE)
det_avg[[i]] <- as.data.frame(a$coefficients)
names(det_avg)[i] <- unique(dat.scaled$scientific_name)[i]
det_modelEst[[i]] <- data.frame(
Coefficient = coefTable(a, full = T)[, 1],
SE = coefTable(a, full = T)[, 2],
lowerCI = confint(a)[, 1],
upperCI = confint(a)[, 2],
z_value = (summary(a)$coefmat.full)[, 3],
Pr_z = (summary(a)$coefmat.full)[, 4]
)
names(det_modelEst)[i] <- unique(dat.scaled$scientific_name)[i]
det_imp[[i]] <- as.data.frame(MuMIn::importance(a))
names(det_imp)[i] <- unique(dat.scaled$scientific_name)[i]
} else {
det_avg[[i]] <- as.data.frame(unmarked::coef(top_det[[i]][[1]]))
names(det_avg)[i] <- unique(dat.scaled$scientific_name)[i]
lowDet <- data.frame(lowerCI = confint(top_det[[i]][[1]], type = "det")[, 1])
upDet <- data.frame(upperCI = confint(top_det[[i]][[1]], type = "det")[, 2])
zDet <- data.frame(summary(top_det[[i]][[1]])$det[, 3])
Pr_zDet <- data.frame(summary(top_det[[i]][[1]])$det[, 4])
Coefficient <- coefTable(top_det[[i]][[1]])[, 1]
SE <- coefTable(top_det[[i]][[1]])[, 2]
det_modelEst[[i]] <- data.frame(
Coefficient = Coefficient[2:length(Coefficient)],
SE = SE[2:length(SE)],
lowerCI = lowDet,
upperCI = upDet,
z_value = zDet,
Pr_z = Pr_zDet
)
names(det_modelEst)[i] <- unique(dat.scaled$scientific_name)[i]
}
setTxtProgressBar(pb, i)
stopCluster(clust)
}
close(pb)
## Storing output from the above models in excel sheets
# 1. Store all the model outputs for each species (variable: det_dred() - see above)
write.xlsx(det_dred, file = "data/results/det-dred.xlsx")
# 2. Store all the model averaged outputs for each species and the relative importance score
write.xlsx(det_avg, file = "data/results/det-avg.xlsx", rowNames = T, colNames = T)
write.xlsx(det_imp, file = "data/results/det-imp.xlsx", rowNames = T, colNames = T)
write.xlsx(det_modelEst, file = "data/results/det-modelEst.xlsx", rowNames = T, colNames = T)
# Note if you are unable to write to a file, use (for example)
a <- purrr::map(det_imp, ~ purrr::compact(.)) %>% purrr::keep(~ length(.) != 0)
```
## Land Cover and Climate
Occupancy models estimate the probability of occurrence of a given species while controlling for the probability of detection and allow us to model the factors affecting occurrence and detection independently [@johnston2018; @mackenzie2002]. The flexible eBird observation process contributes to the largest source of variation in the likelihood of detecting a particular species [@johnston2019a]; hence, we included seven covariates that influence the probability of detection for each checklist: ordinal day of year, duration of observation, distance travelled, protocol type, time observations started, number of observers and the checklist calibration index (CCI).
Using a multi-model information-theoretic approach, we tested how strongly our occurrence data fit our candidate set of environmental covariates [@burnham2002a]. We fitted single-species occupancy models for each species, to simultaneously estimate a probability of detection ($\p$) and a probability of occupancy ($\psi$) [@fiske2011; @mackenzie2002]. For each species, we fit models, each with a unique combination of the climate and land cover occupancy covariates and all seven detection covariates.
Across the models tested for each species, the model with highest support was determined using AICc scores. However, across the majority of the species, no single model had overwhelming support. Hence, for each species, we examined those models which had $\Delta$AICc < 4, as these top models were considered to explain a large proportion of the association between the species-specific probability of occupancy and environmental drivers [@burnham2011; @elsen2017]. Using these restricted model sets for each species; we created a model-averaged coefficient estimate for each predictor and assessed its direction and significance [@MuMIn]. We considered a predictor to be significantly associated with occupancy if the range of the 95% confidence interval around the model-averaged coefficient did not contain zero.
```{r lc_clim}
# All models are stored in lists below
lc_clim <- list()
# Subsetting those models whose deltaAIC<4 (Burnham et al., 2011)
top_lc_clim <- list()
# Getting model averaged coefficients and relative importance scores
lc_clim_avg <- list()
lc_clim_imp <- list()
# Storing Model estimates
lc_clim_modelEst <- list()
# Add a progress bar for the loop
pb <- txtProgressBar(min = 0, max = length(unique(dat.scaled$scientific_name)), style = 3) # text based bar
for (i in 1:length(unique(dat.scaled$scientific_name))) {
data <- dat.scaled %>% filter(dat.scaled$scientific_name == unique(dat.scaled$scientific_name)[i])
# Preparing data for the unmarked model
occ <- filter_repeat_visits(data,
min_obs = 1, max_obs = 10,
annual_closure = FALSE,
n_days = 1488, # 7 years is considered a period of closure
date_var = "observation_date",
site_vars = c("locality_id")
)
obs_covs <- c(
"min_obs_started",
"duration_minutes",
"effort_distance_km",
"number_observers",
"expertise",
"julian_date"
)
# format for unmarked
occ_wide <- format_unmarked_occu(occ,
site_id = "site",
response = "pres_abs",
site_covs = c(
"locality_id", "lc_01", "lc_02", "lc_05",
"lc_04", "lc_09", "lc_07", "lc_03", "bio4a", "bio15a"
),
obs_covs = obs_covs
)
# Convert this dataframe of observations into an unmarked object to start fitting occupancy models
occ_um <- formatWide(occ_wide, type = "unmarkedFrameOccu")
model_lc_clim <- occu(~ min_obs_started +
julian_date +
duration_minutes +
effort_distance_km +
number_observers +
expertise ~ lc_01 + lc_02 + lc_05 + lc_04 + lc_09 + lc_07 + lc_03 +
bio4a + bio15a, data = occ_um)
# Set up the cluster
clusterType <- if (length(find.package("snow", quiet = TRUE))) "SOCK" else "PSOCK"
clust <- try(makeCluster(getOption("cl.cores", 5), type = clusterType))
clusterEvalQ(clust, library(unmarked))
clusterExport(clust, "occ_um")
# Detection terms are fixed
det_terms <- c(
"p(duration_minutes)", "p(effort_distance_km)", "p(expertise)",
"p(julian_date)", "p(min_obs_started)",
"p(number_observers)"
)
lc_clim[[i]] <- pdredge(model_lc_clim, clust, fixed = det_terms)
names(lc_clim)[i] <- unique(dat.scaled$scientific_name)[i]
# Identiying top subset of models based on deltaAIC scores being less than 4 (Burnham et al., 2011)
top_lc_clim[[i]] <- get.models(lc_clim[[i]], subset = delta < 4, cluster = clust)
names(top_lc_clim)[i] <- unique(dat.scaled$scientific_name)[i]
# Obtaining model averaged coefficients for both candidate model subsets
if (length(top_lc_clim[[i]]) > 1) {
a <- model.avg(top_lc_clim[[i]], fit = TRUE)
lc_clim_avg[[i]] <- as.data.frame(a$coefficients)
names(lc_clim_avg)[i] <- unique(dat.scaled$scientific_name)[i]
lc_clim_modelEst[[i]] <- data.frame(
Coefficient = coefTable(a, full = T)[, 1],
SE = coefTable(a, full = T)[, 2],
lowerCI = confint(a)[, 1],
upperCI = confint(a)[, 2],
z_value = (summary(a)$coefmat.full)[, 3],
Pr_z = (summary(a)$coefmat.full)[, 4]
)
names(lc_clim_modelEst)[i] <- unique(dat.scaled$scientific_name)[i]
lc_clim_imp[[i]] <- as.data.frame(MuMIn::importance(a))
names(lc_clim_imp)[i] <- unique(dat.scaled$scientific_name)[i]
} else {
lc_clim_avg[[i]] <- as.data.frame(unmarked::coef(top_lc_clim[[i]][[1]]))
names(lc_clim_avg)[i] <- unique(dat.scaled$scientific_name)[i]
lowSt <- data.frame(lowerCI = confint(top_lc_clim[[i]][[1]], type = "state")[, 1])
lowDet <- data.frame(lowerCI = confint(top_lc_clim[[i]][[1]], type = "det")[, 1])
upSt <- data.frame(upperCI = confint(top_lc_clim[[i]][[1]], type = "state")[, 2])
upDet <- data.frame(upperCI = confint(top_lc_clim[[i]][[1]], type = "det")[, 2])
zSt <- data.frame(z_value = summary(top_lc_clim[[i]][[1]])$state[, 3])
zDet <- data.frame(z_value = summary(top_lc_clim[[i]][[1]])$det[, 3])
Pr_zSt <- data.frame(Pr_z = summary(top_lc_clim[[i]][[1]])$state[, 4])
Pr_zDet <- data.frame(Pr_z = summary(top_lc_clim[[i]][[1]])$det[, 4])
lc_clim_modelEst[[i]] <- data.frame(
Coefficient = coefTable(top_lc_clim[[i]][[1]])[, 1],
SE = coefTable(top_lc_clim[[i]][[1]])[, 2],
lowerCI = rbind(lowSt, lowDet),
upperCI = rbind(upSt, upDet),
z_value = rbind(zSt, zDet),
Pr_z = rbind(Pr_zSt, Pr_zDet)
)
names(lc_clim_modelEst)[i] <- unique(dat.scaled$scientific_name)[i]
}
gc()
setTxtProgressBar(pb, i)
stopCluster(clust)
}
close(pb)
# 1. Store all the model outputs for each species (for both landcover and climate)
write.xlsx(lc_clim, file = "data/results/lc-clim.xlsx")
# 2. Store all the model averaged outputs for each species and relative importance scores
write.xlsx(lc_clim_avg, file = "data/results/lc-clim-avg.xlsx", rowNames = T, colNames = T)
write.xlsx(lc_clim_imp, file = "data/results/lc-clim-imp.xlsx", rowNames = T, colNames = T)
# 3. Store all model estimates
write.xlsx(lc_clim_modelEst, file = "data/results/lc-clim-modelEst.xlsx", rowNames = T, colNames = T)
# Note if you are unable to write to a file, use (for example)
a <- purrr::map(lc_clim_modelEst, ~ purrr::compact(.)) %>% purrr::keep(~ length(.) != 0)
```
## Goodness-of-fit tests
Adequate model fit was assessed using a chi-square goodness-of-fit test using 1,000 parametric bootstrap simulations on a global model that included all occupancy and detection covariates (MacKenzie & Bailey, 2004).
```{r}
goodness_of_fit <- data.frame()
# Add a progress bar for the loop
pb <- txtProgressBar(min = 0, max = length(unique(dat.scaled$scientific_name)), style = 3) # text based bar
for (i in 1:length(unique(dat.scaled$scientific_name))) {
data <- dat.scaled %>% filter(dat.scaled$scientific_name == unique(dat.scaled$scientific_name)[i])
# Preparing data for the unmarked model
occ <- filter_repeat_visits(data,
min_obs = 1, max_obs = 10,
annual_closure = FALSE,
n_days = 1488, # 7 years is considered a period of closure
date_var = "observation_date",
site_vars = c("locality_id")
)
obs_covs <- c(
"min_obs_started",
"duration_minutes",
"effort_distance_km",
"number_observers",
"protocol_type",
"expertise",
"julian_date"
)
# format for unmarked
occ_wide <- format_unmarked_occu(occ,
site_id = "site",
response = "pres_abs",
site_covs = c(
"locality_id", "lc_01", "lc_02", "lc_05",
"lc_04", "lc_09", "lc_07", "lc_03", "bio4a", "bio15a"
),
obs_covs = obs_covs
)
# Convert this dataframe of observations into an unmarked object to start fitting occupancy models
occ_um <- formatWide(occ_wide, type = "unmarkedFrameOccu")
model_lc_clim <- occu(~ min_obs_started +
julian_date +
duration_minutes +
effort_distance_km +
number_observers +
protocol_type +
expertise ~ lc_01 + lc_02 + lc_05 +
lc_04 + lc_09 + lc_07 + lc_03 + bio4a + bio15a, data = occ_um)
# note: reduce nsim as this takes a very long time even with parallelization
occ_gof <- mb.gof.test(model_lc_clim,
nsim = 1000, parallel = T, ncores = 5,
plot.hist = FALSE
)
p.value <- occ_gof$p.value
c.hat <- occ_gof$c.hat.est
scientific_name <- unique(data$scientific_name)
a <- data.frame(scientific_name, p.value, c.hat)
goodness_of_fit <- rbind(a, goodness_of_fit)
setTxtProgressBar(pb, i)
}
close(pb)
write.csv(goodness_of_fit, "data/results/goodness-of-fit-2.5km.csv", row.names = F)
```