forked from vjjan91/eBirdOccupancy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path06_spatial-sampling-bias-distRoads.Rmd
351 lines (306 loc) · 8.83 KB
/
06_spatial-sampling-bias-distRoads.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
---
editor_options:
chunk_output_type: console
---
# Examining Spatial Sampling Bias
The goal of this section is to show how far each checklist location is from the nearest road, and how far each site is from its nearest neighbour. This follows finding the pairwise distance between a large number of unique checklist locations to a vast number of roads, as well as to each other.
## Prepare libraries
```{r setup_libs}
# load libraries
# for data
library(sf)
library(rnaturalearth)
library(dplyr)
library(readr)
library(purrr)
# for plotting
library(scales)
library(ggplot2)
library(ggspatial)
library(colorspace)
# round any function
round_any <- function(x, accuracy = 20000) {
round(x / accuracy) * accuracy
}
# ci function
ci <- function(x) {
qnorm(0.975) * sd(x, na.rm = TRUE) / sqrt(length(x))
}
```
## Read checklist data
Read in checklist data with distance to nearest neighbouring site, and the distance to the nearest road.
```{r read_chk_dists}
# read from local file
chkCovars <- read_csv("data/03_data-covars-perChklist.csv")
```
### Spatially explicit filter on checklists
We filter the checklists by the boundary of the study area. This is *not* the extent.
```{r spatial_filter_nnb_dist}
chkCovars <- st_as_sf(chkCovars, coords = c("longitude", "latitude")) %>%
`st_crs<-`(4326) %>%
st_transform(32643)
# read wg
wg <- st_read("data/spatial/hillsShapefile/Nil_Ana_Pal.shp") %>%
st_transform(32643)
# get bounding box
bbox <- st_bbox(wg)
# spatial subset
chkCovars <- chkCovars %>%
mutate(id = 1:nrow(.)) %>%
filter(id %in% unlist(st_contains(wg, chkCovars)))
```
### Get background land for plotting
```{r}
# add land
land <- ne_countries(
scale = 50, type = "countries", continent = "asia",
country = "india",
returnclass = c("sf")
) %>%
st_transform(32643)
# add roads data
roads <- st_read("data/spatial/roads_studysite_2019/roads_studysite_2019.shp") %>%
st_transform(32643)
```
## Prepare Main Text Figure 3
### Prepare histogram of distance to roads
Figure code is hidden in versions rendered as HTML or PDF.
```{r plot_histogram, echo=FALSE}
# make histogram
hist_roads <-
ggplot(chkCovars) +
geom_histogram(
aes(
dist_road / 1e3
),
bins = 20, size = 0.2,
fill = "steelblue"
) +
scale_x_log10(
# label = label_number(accuracy = 0.1),
breaks = c(0.1, 1, 10),
labels = c("0.1", "1", "10")
) +
scale_y_continuous(
breaks = c(0, 2500, 5000),
label = label_number(
scale = 0.001,
accuracy = 1, suffix = "K"
)
) +
coord_cartesian(
expand = F
) +
theme_test() +
theme(
plot.background = element_rect(fill = "white", colour = 1),
panel.background = element_blank(),
panel.border = element_blank(), axis.line = element_blank()
) +
labs(
x = "Distance to roads (km)",
y = "# Locations"
)
```
### Table: Distance to roads
```{r save_global_mean_dist_roads}
# write the mean and ci95 to file
chkCovars %>%
st_drop_geometry() %>%
dplyr::select(dist_road, nnb) %>%
tidyr::pivot_longer(
cols = c("dist_road", "nnb"),
names_to = "variable"
) %>%
group_by(variable) %>%
summarise_at(
vars(value),
list(~ mean(.), ~ sd(.), ~ min(.), ~ max(.))
) %>%
write_csv("data/results/distance_roads_sites.csv")
```
```{r show_dist_roads_nnb, , message=FALSE, echo=FALSE}
# read in and show
library(magrittr)
readr::read_csv("data/results/distance_roads_sites.csv") %>%
kableExtra::kbl(
booktabs = TRUE
) %>%
kableExtra::kable_styling(latex_options = c("hold_position"))
```
### Distance to nearest neighbouring site
```{r get_nn_site}
# get unique locations from checklists
locs_unique <- cbind(
st_drop_geometry(chkCovars),
st_coordinates(chkCovars)
) %>%
as_tibble()
locs_unique <- distinct(locs_unique, X, Y, .keep_all = T)
```
Figure code is hidden in versions rendered as HTML and PDF.
```{r echo=FALSE, eval=FALSE}
# make histogram of nearest neighbours
hist_sites <-
ggplot(locs_unique) +
geom_histogram(aes(nnb / 1e3),
bins = 100, size = 0.2, fill = "steelblue"
) +
labs(x = "dist. nearest site (km)", y = "# sites") +
# scale_x_log10(label=label_number(accuracy = 0.1),
# breaks = c(0.1, 1, 10))+
coord_cartesian(xlim = c(0, 10)) +
scale_y_continuous(label = label_number(
scale = 0.001, accuracy = 1,
suffix = "K"
)) +
theme_test() +
theme(
plot.background = element_rect(fill = NA, colour = 1),
panel.background = element_blank(),
panel.border = element_blank(), axis.line = element_blank()
)
```
### Spatial distribution of distances to neighbours
Figure code is hidden in HTML and PDF versions, consult the Rmarkdown file.
```{r plot_map_nnb, echo=FALSE, eval=FALSE}
# transform points to utm
locs_unique <- locs_unique %>%
st_as_sf(coords = c("X", "Y"), crs = 32643)
# add nnb to locations
fig_site_nnb <-
ggplot() +
geom_sf(data = land, fill = "grey90", col = NA) +
geom_sf(data = wg, fill = NA, col = 1) +
annotation_custom(
grob = hist_sites %>% ggplotGrob(),
xmin = bbox["xmax"] - (bbox["xmax"] - bbox["xmin"]) / 2.5,
xmax = bbox["xmax"],
ymin = bbox["ymax"] - (bbox["ymax"] - bbox["ymin"]) / 3,
ymax = bbox["ymax"]
) +
geom_sf(data = roads, size = 0.2, col = "steelblue") +
geom_sf(
data = locs_unique, aes(col = nnb / 1000),
alpha = 0.5
) +
scico::scale_colour_scico(
palette = "lajolla",
values = c(0, 1), direction = 1, limits = c(0, 5),
na.value = "dodgerblue"
) +
annotation_north_arrow(
location = "br", which_north = "true",
pad_x = unit(0.1, "in"), pad_y = unit(0.5, "in"),
style = north_arrow_fancy_orienteering
) +
annotation_scale(location = "br", width_hint = 0.4, text_cex = 1) +
theme_test() +
theme(
legend.position = c(0.9, 0.53),
legend.background = element_blank(),
legend.key = element_rect(fill = "grey90"),
legend.key.width = unit(2, units = "mm"),
legend.title = element_text(face = "bold"),
axis.title = element_blank(),
axis.text.y = element_text(
angle = 90,
hjust = 0.5
),
panel.background = element_rect(fill = "lightblue")
) +
coord_sf(
expand = FALSE, xlim = bbox[c("xmin", "xmax")],
ylim = bbox[c("ymin", "ymax")]
) +
labs(colour = "Dist NN site")
ggsave(
fig_site_nnb,
filename = "figs/fig_site_nnb.png",
width = 6, height = 6
)
```
![Most observation sites are within 300m of another site.](figs/fig_site_nnb.png)
## Figure: Spatial sampling bias
```{r load_data_in_r}
# get locations
points <- chkCovars %>%
bind_cols(as_tibble(st_coordinates(.))) %>%
st_drop_geometry() %>%
mutate(X = round_any(X, 2500), Y = round_any(Y, 2500))
# count points
points <- count(points, X, Y)
```
Figure code is hidden in versions rendered as HTML and PDF.
```{r plot_map_dist_roads, , echo=FALSE}
# plot on maps
fig_checklists_grid <-
ggplot() +
geom_sf(
data = land,
fill = "grey90",
col = NA
) +
geom_sf(
data = wg,
fill = NA,
col = 1,
lty = 2
) +
annotation_custom(
grob = hist_roads %>% ggplotGrob(),
xmin = bbox["xmax"] - (bbox["xmax"] - bbox["xmin"]) / 2.5,
xmax = bbox["xmax"],
ymin = bbox["ymax"] - (bbox["ymax"] - bbox["ymin"]) / 3,
ymax = bbox["ymax"]
) +
geom_tile(data = points, aes(X, Y, fill = n), col = "grey90") +
geom_sf(data = roads, size = 0.2, col = "steelblue") +
# scale_colour_manual(values = "steelblue", labels = "roads")+
scale_fill_continuous_sequential(
palette = "Lajolla",
trans = "log10",
rev = F
) +
annotation_north_arrow(
location = "bl", which_north = "true",
pad_x = unit(0.1, "in"), pad_y = unit(0.5, "in"),
style = north_arrow_fancy_orienteering
) +
annotation_scale(
location = "bl",
width_hint = 0.25,
text_cex = 1,
style = "ticks"
) +
theme_test() +
theme(
legend.position = c(0.9, 0.53),
legend.background = element_blank(),
legend.key = element_rect(fill = "grey90"),
legend.key.width = unit(2, units = "mm"),
legend.title = element_text(face = "bold"),
axis.title = element_blank(),
axis.text.y = element_text(
angle = 90,
hjust = 0.5
),
panel.background = element_rect(fill = "lightblue")
) +
coord_sf(
expand = FALSE,
xlim = bbox[c("xmin", "xmax")],
ylim = bbox[c("ymin", "ymax")]
) +
labs(fill = "# Checklists", colour = NULL)
```
```{r}
# save as png
ggsave(
fig_checklists_grid,
filename = "figs/fig_spatial_bias.png"
)
# save figure as Robject for next plot
save(fig_checklists_grid, file = "data/fig_checklists_grid.Rds")
```
![Sampling effort across the Nilgiri and Anamalai Hills, in the form of eBird checklists reported by birdwatchers, mostly takes place along roads, with the majority of checklists located < 1 km from a roadway (see distribution in inset), and therefore, only about 300m, on average, from the location of another checklist. Each cell here is 2.5km x 2.5km.](figs/fig_spatial_bias.png)