forked from vjjan91/eBirdOccupancy
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path04_checklist-calibration-index.Rmd
328 lines (270 loc) · 9.46 KB
/
04_checklist-calibration-index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
---
editor_options:
chunk_output_type: console
---
# Preparing Checklist Calibration Index
Differences in local avifaunal expertise among citizen scientists can lead to biased species detection when compared with data collected by a consistent set of trained observers [@vanstrien2013]. Including observer expertise as a detection covariate in occupancy models using eBird data can help account for this variation [@johnston2018]. Observer-specific expertise in local avifauna was calculated following [@kelling2015a] as the normalized predicted number of species reported by an observer after 60 minutes of sampling across the most common land cover type within the study area. This score was calculated by examining checklists from anonymized observers across the study area. We modified Kelling et al. (2015) formulation by including only observations of the 79 species of interest in our calculations. An observer with a higher number of species of interest reported within 60 minutes would have a higher observer-specific expertise score, with respect to the study area.
## Prepare libraries
```{r load_libs3, , message=FALSE, warning=FALSE}
# load libs
library(data.table)
library(readxl)
library(magrittr)
library(stringr)
library(dplyr)
library(tidyr)
library(auk)
# get decimal time function
library(lubridate)
time_to_decimal <- function(x) {
x <- lubridate::hms(x, quiet = TRUE)
lubridate::hour(x) + lubridate::minute(x) / 60 + lubridate::second(x) / 3600
}
```
## Prepare data
Here, we go through the data preparation process again because we might want to assess observer expertise over a larger area than the study site.
```{r load_raw_data}
# Read in shapefile of study area to subset by bounding box
library(sf)
wg <- st_read("data/spatial/hillsShapefile/Nil_Ana_Pal.shp") %>%
st_transform(32643)
# set file paths for auk functions
f_in_ebd <- file.path("data/01_ebird-filtered-EBD-westernGhats.txt")
f_in_sampling <- file.path("data/01_ebird-filtered-sampling-westernGhats.txt")
# run filters using auk packages
ebd_filters <- auk_ebd(f_in_ebd, f_in_sampling) %>%
auk_country(country = "IN") %>%
auk_state(c("IN-KL", "IN-TN", "IN-KA")) %>%
# Restricting geography to TamilNadu, Kerala & Karnataka
auk_date(c("2013-01-01", "2021-05-31")) %>%
auk_complete()
# check filters
ebd_filters
# specify output location and perform filter
f_out_ebd <- "data/ebird_for_expertise.txt"
f_out_sampling <- "data/ebird_sampling_for_expertise.txt"
ebd_filtered <- auk_filter(ebd_filters,
file = f_out_ebd,
file_sampling = f_out_sampling, overwrite = TRUE
)
```
Load in the filtered data and columns of interest.
```{r read_all_ebd}
## Process filtered data
# read in the data
ebd <- fread(f_out_ebd)
names <- names(ebd) %>%
stringr::str_to_lower() %>%
stringr::str_replace_all(" ", "_")
setnames(ebd, names)
# choose columns of interest
columnsOfInterest <- c(
"global_unique_identifier", "scientific_name", "observation_count",
"locality", "locality_id", "locality_type", "latitude",
"longitude", "observation_date",
"time_observations_started", "observer_id",
"sampling_event_identifier", "protocol_type",
"duration_minutes", "effort_distance_km", "effort_area_ha",
"number_observers", "all_species_reported", "reviewed"
)
ebd <- setDF(ebd) %>%
as_tibble() %>%
dplyr::select(one_of(columnsOfInterest))
setDT(ebd)
# remove checklists or seis with more than 10 obervers
ebd <- filter(ebd, number_observers <= 10)
# keep only checklists between 5AM and 7PM
ebd <- filter(ebd, time_observations_started >= "05:00:00" & time_observations_started <= "19:00:00")
# keep only checklists between December 1st and May 31st
ebd <- filter(ebd, month(observation_date) %in% c(1, 2, 3, 4, 5, 12))
```
## Spatially explicit filter on checklists
```{r hills_subset_exp}
# get checklist locations
ebd_locs <- ebd[, .(longitude, latitude)]
ebd_locs <- setDF(ebd_locs) %>% distinct()
ebd_locs <- st_as_sf(ebd_locs,
coords = c("longitude", "latitude")
) %>%
`st_crs<-`(4326) %>%
bind_cols(as_tibble(st_coordinates(.))) %>%
st_transform(32643) %>%
mutate(id = 1:nrow(.))
# check whether to include
to_keep <- unlist(st_contains(wg, ebd_locs))
# filter locs
ebd_locs <- filter(ebd_locs, id %in% to_keep) %>%
bind_cols(as_tibble(st_coordinates(st_as_sf(.)))) %>%
st_drop_geometry()
names(ebd_locs) <- c("longitudeWGS", "latitudeWGS", "id", "longitudeUTM", "latitudeUTM")
```
```{r hills_subset_exp2}
ebd <- ebd[longitude %in% ebd_locs$longitudeWGS & latitude %in% ebd_locs$latitudeWGS, ]
```
## Prepare species of interest
```{r soi_score}
# read in species list
specieslist <- read.csv("data/species_list.csv")
# set species of interest
soi <- specieslist$scientific_name
ebdSpSum <- ebd[, .(
nSp = .N,
totSoiSeen = length(intersect(scientific_name, soi))
),
by = list(sampling_event_identifier)
]
# write to file and link with checklist id later
fwrite(ebdSpSum, file = "data/03_data-nspp-per-chk.csv")
```
## Prepare checklists for observer score
```{r prepare_chk_covars}
# 1. add new columns of decimal time and julian date
ebd[, `:=`(
decimalTime = time_to_decimal(time_observations_started),
julianDate = yday(as.POSIXct(observation_date))
)]
ebdEffChk <- setDF(ebd) %>%
mutate(year = year(observation_date)) %>%
distinct(
sampling_event_identifier, observer_id,
year,
duration_minutes, effort_distance_km, effort_area_ha,
longitude, latitude,
locality, locality_id,
decimalTime, julianDate, number_observers
) %>%
# drop rows with NAs in cols used in the model
tidyr::drop_na(
sampling_event_identifier, observer_id,
duration_minutes, decimalTime, julianDate
) %>%
# drop years below 2013
filter(year >= 2013)
# 3. join to covariates and remove large groups (> 10)
ebdChkSummary <- inner_join(ebdEffChk, ebdSpSum)
# remove ebird data
rm(ebd)
gc()
```
## Get landcover
Read in land cover type data resampled at 1km resolution.
```{r chk_covar_landuse}
# read in 1km landcover and set 0 to NA
library(raster)
landcover <- raster::raster("data/landUseClassification/lc_01000m.tif")
landcover[landcover == 0] <- NA
# get locs in utm coords
locs <- distinct(
ebdChkSummary, sampling_event_identifier, longitude, latitude,
locality, locality_id
)
locs <- st_as_sf(locs, coords = c("longitude", "latitude")) %>%
`st_crs<-`(4326) %>%
st_transform(32643) %>%
st_coordinates()
# get for unique points
landcoverVec <- raster::extract(
x = landcover,
y = locs
)
# assign to df and overwrite
setDT(ebdChkSummary)[, landcover := landcoverVec]
```
## Filter checklist data
```{r filter_data2}
# change names for easy handling
setnames(ebdChkSummary, c(
"locality",
"locality_id", "latitude", "longitude", "observer", "sei",
"duration", "distance", "area", "nObs", "decimalTime", "julianDate",
"year", "nSp", "nSoi", "landcover"
))
# count data points per observer
obscount <- count(ebdChkSummary, observer) %>%
filter(n >= 3)
# make factor variables and remove obs not in obscount
# also remove 0 durations
ebdChkSummary <- ebdChkSummary %>%
mutate(
distance = ifelse(is.na(distance), 0, distance),
duration = if_else(is.na(duration), 0.0, as.double(duration))
) %>%
filter(
observer %in% obscount$observer,
duration > 0,
duration <= 300,
nSoi >= 0,
distance <= 5,
!is.na(nSoi)
) %>%
mutate(
landcover = as.factor(landcover),
observer = as.factor(observer)
) %>%
drop_na(landcover)
# editing julian date to model it in a linear fashion
unique(ebdChkSummary$julianDate)
ebdChkSummary <- ebdChkSummary %>%
mutate(
newjulianDate =
case_when(
julianDate >= 334 & julianDate <= 365 ~ (julianDate - 333),
julianDate >= 1 & julianDate <= 152 ~ (julianDate + 31)
)
) %>%
drop_na(newjulianDate)
# save to file for later reuse
fwrite(ebdChkSummary, file = "data/03_data-covars-perChklist.csv")
```
## Model observer expertise
Our observer expertise model aims to include the random intercept effect of observer identity, with a random slope effect of duration. This models the different rate of species accumulation by different observers, as well as their different starting points.
```{r run_model}
# uses either a subset or all data
library(lmerTest)
# here we specify a glmm with random effects for observer
# time is considered a fixed log predictor and a random slope
modObsExp <- glmer(nSoi ~ duration + sqrt(duration) +
landcover +
sqrt(decimalTime) +
I((sqrt(decimalTime))^2) +
log(newjulianDate) +
I((log(newjulianDate)^2)) +
(1 | observer) + (0 + duration | observer),
data = ebdChkSummary, family = "poisson"
)
```
```{r write_obsexp_model}
# make dir if absent
if (!dir.exists("data/modOutput")) {
dir.create("data/modOutput")
}
# write model output to text file
{
writeLines(R.utils::captureOutput(list(Sys.time(), summary(modObsExp))),
con = "data/modOutput/03_model-output-expertise.txt"
)
}
```
```{r obsexp_ranef}
# make df with means
observer <- unique(ebdChkSummary$observer)
# predict at 60 mins on the most common landcover (deciduous forests)
dfPredict <- ebdChkSummary %>%
summarise_at(vars(duration, decimalTime, newjulianDate), list(~ mean(.))) %>%
mutate(duration = 60, landcover = as.factor(2)) %>%
tidyr::crossing(observer)
# run predict from model on it
dfPredict <- mutate(dfPredict,
score = predict(modObsExp,
newdata = dfPredict,
type = "response",
allow.new.levels = TRUE
)
) %>%
mutate(score = scales::rescale(score))
```
```{r write_obsexp}
fwrite(dfPredict %>% dplyr::select(observer, score),
file = "data/03_data-obsExpertise-score.csv"
)
```