-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmove_to_desired_position.py
709 lines (569 loc) · 25.6 KB
/
move_to_desired_position.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
#!/usr/bin/env python
# This program does following:
# Decte aruco marker and the robot goes to the desired position of the aruco marker
# This one was done for the project done with Garret, David 2021 - 2020
import sys
import copy
import rospy
import moveit_commander
import moveit_msgs.msg
import geometry_msgs.msg
from math import pi
from std_msgs.msg import String
from moveit_commander.conversions import pose_to_list
import numpy as np
import cv2
import pyrealsense2 as rs
# Initialize the camera
pipeline = rs.pipeline()
config = rs.config()
pipeline_wrapper = rs.pipeline_wrapper(pipeline)
pipeline_profile = config.resolve(pipeline_wrapper)
device = pipeline_profile.get_device()
device_product_line = str(device.get_info(rs.camera_info.product_line))
found_rgb = False
for s in device.sensors:
if s.get_info(rs.camera_info.name) == 'RGB Camera':
found_rgb = True
break
if not found_rgb:
print("The demo requires Depth camera with Color sensor")
exit(0)
# 640 is the image width and 480 is the image height
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
pipeline.start(config)
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
depth_frame = frames.get_depth_frame()
intrin = rs.video_stream_profile(depth_frame.get_profile()).get_intrinsics()
def all_close(goal, actual, tolerance):
"""
Convenience method for testing if a list of values are within a tolerance of their counterparts in another list
@param: goal A list of floats, a Pose or a PoseStamped
@param: actual A list of floats, a Pose or a PoseStamped
@param: tolerance A float
@returns: bool
"""
all_equal = True
if type(goal) is list:
for index in range(len(goal)):
if abs(actual[index] - goal[index]) > tolerance:
return False
elif type(goal) is geometry_msgs.msg.PoseStamped:
return all_close(goal.pose, actual.pose, tolerance)
elif type(goal) is geometry_msgs.msg.Pose:
return all_close(pose_to_list(goal), pose_to_list(actual), tolerance)
return True
class MoveGroupPythonIntefaceTutorial(object):
"""MoveGroupPythonIntefaceTutorial"""
def __init__(self):
super(MoveGroupPythonIntefaceTutorial, self).__init__()
## BEGIN_SUB_TUTORIAL setup
##
## First initialize `moveit_commander`_ and a `rospy`_ node:
moveit_commander.roscpp_initialize(sys.argv)
rospy.init_node('move_group_python_interface_tutorial',
anonymous=True)
## Instantiate a `RobotCommander`_ object. This object is the outer-level interface to
## the robot:
robot = moveit_commander.RobotCommander()
## Instantiate a `PlanningSceneInterface`_ object. This object is an interface
## to the world surrounding the robot:
scene = moveit_commander.PlanningSceneInterface()
## Instantiate a `MoveGroupCommander`_ object. This object is an interface
## to one group of joints. In this case the group is the joints in the Panda
## arm so we set ``group_name = panda_arm``. If you are using a different robot,
## you should change this value to the name of your robot arm planning group.
## This interface can be used to plan and execute motions on the Panda:
group_name = "panda_arm"
group = moveit_commander.MoveGroupCommander(group_name)
## We create a `DisplayTrajectory`_ publisher which is used later to publish
## trajectories for RViz to visualize:
display_trajectory_publisher = rospy.Publisher('/move_group/display_planned_path',
moveit_msgs.msg.DisplayTrajectory,
queue_size=20)
## END_SUB_TUTORIAL
## BEGIN_SUB_TUTORIAL basic_info
##
## Getting Basic Information
## ^^^^^^^^^^^^^^^^^^^^^^^^^
# We can get the name of the reference frame for this robot:
planning_frame = group.get_planning_frame()
print "============ Reference frame: %s" % planning_frame
# We can also print the name of the end-effector link for this group:
eef_link = group.get_end_effector_link()
print "============ End effector: %s" % eef_link
# We can get a list of all the groups in the robot:
group_names = robot.get_group_names()
print "============ Robot Groups:", robot.get_group_names()
# Sometimes for debugging it is useful to print the entire state of the
# robot:
print "============ Printing robot state"
print robot.get_current_state()
print ""
## END_SUB_TUTORIAL
# Misc variables
self.box_name = ''
self.robot = robot
self.scene = scene
self.group = group
self.display_trajectory_publisher = display_trajectory_publisher
self.planning_frame = planning_frame
self.eef_link = eef_link
self.group_names = group_names
def go_to_joint_state(self):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
group = self.group
## BEGIN_SUB_TUTORIAL plan_to_joint_state
##
## Planning to a Joint Goal
## ^^^^^^^^^^^^^^^^^^^^^^^^
## The Panda's zero configuration is at a `singularity <https://www.quora.com/Robotics-What-is-meant-by-kinematic-singularity>`_ so the first
## thing we want to do is move it to a slightly better configuration.
# We can get the joint values from the group and adjust some of the values:
joint_goal = group.get_current_joint_values()
joint_goal[0] = 0
joint_goal[1] = -pi/4
joint_goal[2] = 0
joint_goal[3] = -pi/2
joint_goal[4] = 0
joint_goal[5] = pi/3
joint_goal[6] = 0
# The go command can be called with joint values, poses, or without any
# parameters if you have already set the pose or joint target for the group
group.go(joint_goal, wait=True)
# Calling ``stop()`` ensures that there is no residual movement
group.stop()
## END_SUB_TUTORIAL
# For testing:
# Note that since this section of code will not be included in the tutorials
# we use the class variable rather than the copied state variable
current_joints = self.group.get_current_joint_values()
return all_close(joint_goal, current_joints, 0.01)
def go_to_pose_goal(self):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
group = self.group
## BEGIN_SUB_TUTORIAL plan_to_pose
##
## Planning to a Pose Goal
## ^^^^^^^^^^^^^^^^^^^^^^^
## We can plan a motion for this group to a desired pose for the
## end-effector:
pose_goal = geometry_msgs.msg.Pose()
pose_goal.orientation.w = 1.0
pose_goal.position.x = 0.4
pose_goal.position.y = 0.1
pose_goal.position.z = 0.4
group.set_pose_target(pose_goal)
## Now, we call the planner to compute the plan and execute it.
plan = group.go(wait=True)
# Calling `stop()` ensures that there is no residual movement
group.stop()
# It is always good to clear your targets after planning with poses.
# Note: there is no equivalent function for clear_joint_value_targets()
group.clear_pose_targets()
## END_SUB_TUTORIAL
# For testing:
# Note that since this section of code will not be included in the tutorials
# we use the class variable rather than the copied state variable
current_pose = self.group.get_current_pose().pose
return all_close(pose_goal, current_pose, 0.01)
def plan_cartesian_path(self, xdesired, ydesired, zdesired):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
group = self.group
## BEGIN_SUB_TUTORIAL plan_cartesian_path
##
## Cartesian Paths
## ^^^^^^^^^^^^^^^
## You can plan a Cartesian path directly by specifying a list of waypoints
## for the end-effector to go through:
##
waypoints = []
# Get the current pose
wpose = group.get_current_pose().pose
wpose.position.x = xdesired
wpose.position.y = -ydesired
# wpose.position.z -= scale * 0.1 # First move up (z)
# wpose.position.y += scale * 0.2 # and sideways (y)
waypoints.append(copy.deepcopy(wpose))
# wpose.position.x += scale * 0.1 # Second move forward/backwards in (x)
# waypoints.append(copy.deepcopy(wpose))
# wpose.position.y -= scale * 0.1 # Third move sideways (y)
# waypoints.append(copy.deepcopy(wpose))
# We want the Cartesian path to be interpolated at a resolution of 1 cm
# which is why we will specify 0.01 as the eef_step in Cartesian
# translation. We will disable the jump threshold by setting it to 0.0 disabling:
(plan, fraction) = group.compute_cartesian_path(
waypoints, # waypoints to follow
0.01, # eef_step
0.0) # jump_threshold
# Note: We are just planning, not asking move_group to actually move the robot yet:
return plan, fraction
## END_SUB_TUTORIAL
def plan_cartesian_path_x(self, xdesired):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
group = self.group
## BEGIN_SUB_TUTORIAL plan_cartesian_path
##
## Cartesian Paths
## ^^^^^^^^^^^^^^^
## You can plan a Cartesian path directly by specifying a list of waypoints
## for the end-effector to go through:
##
waypoints = []
# Get the current pose
wpose = group.get_current_pose().pose
wpose.position.x = xdesired
# wpose.position.z -= scale * 0.1 # First move up (z)
# wpose.position.y += scale * 0.2 # and sideways (y)
waypoints.append(copy.deepcopy(wpose))
# wpose.position.x += scale * 0.1 # Second move forward/backwards in (x)
# waypoints.append(copy.deepcopy(wpose))
# wpose.position.y -= scale * 0.1 # Third move sideways (y)
# waypoints.append(copy.deepcopy(wpose))
# We want the Cartesian path to be interpolated at a resolution of 1 cm
# which is why we will specify 0.01 as the eef_step in Cartesian
# translation. We will disable the jump threshold by setting it to 0.0 disabling:
(plan, fraction) = group.compute_cartesian_path(
waypoints, # waypoints to follow
0.01, # eef_step
0.0) # jump_threshold
# Note: We are just planning, not asking move_group to actually move the robot yet:
return plan, fraction
def plan_cartesian_path_y(self, ydesired):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
group = self.group
## BEGIN_SUB_TUTORIAL plan_cartesian_path
##
## Cartesian Paths
## ^^^^^^^^^^^^^^^
## You can plan a Cartesian path directly by specifying a list of waypoints
## for the end-effector to go through:
##
waypoints = []
# Get the current pose
wpose = group.get_current_pose().pose
wpose.position.y = ydesired
# wpose.position.z -= scale * 0.1 # First move up (z)
# wpose.position.y += scale * 0.2 # and sideways (y)
waypoints.append(copy.deepcopy(wpose))
# wpose.position.x += scale * 0.1 # Second move forward/backwards in (x)
# waypoints.append(copy.deepcopy(wpose))
# wpose.position.y -= scale * 0.1 # Third move sideways (y)
# waypoints.append(copy.deepcopy(wpose))
# We want the Cartesian path to be interpolated at a resolution of 1 cm
# which is why we will specify 0.01 as the eef_step in Cartesian
# translation. We will disable the jump threshold by setting it to 0.0 disabling:
(plan, fraction) = group.compute_cartesian_path(
waypoints, # waypoints to follow
0.01, # eef_step
0.0) # jump_threshold
# Note: We are just planning, not asking move_group to actually move the robot yet:
return plan, fraction
## END_SUB_TUTORIAL
def display_trajectory(self, plan):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
robot = self.robot
display_trajectory_publisher = self.display_trajectory_publisher
## BEGIN_SUB_TUTORIAL display_trajectory
##
## Displaying a Trajectory
## ^^^^^^^^^^^^^^^^^^^^^^^
## You can ask RViz to visualize a plan (aka trajectory) for you. But the
## group.plan() method does this automatically so this is not that useful
## here (it just displays the same trajectory again):
##
## A `DisplayTrajectory`_ msg has two primary fields, trajectory_start and trajectory.
## We populate the trajectory_start with our current robot state to copy over
## any AttachedCollisionObjects and add our plan to the trajectory.
display_trajectory = moveit_msgs.msg.DisplayTrajectory()
display_trajectory.trajectory_start = robot.get_current_state()
display_trajectory.trajectory.append(plan)
# Publish
display_trajectory_publisher.publish(display_trajectory);
## END_SUB_TUTORIAL
def execute_plan(self, plan):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
group = self.group
## BEGIN_SUB_TUTORIAL execute_plan
##
## Executing a Plan
## ^^^^^^^^^^^^^^^^
## Use execute if you would like the robot to follow
## the plan that has already been computed:
group.execute(plan, wait=True)
## **Note:** The robot's current joint state must be within some tolerance of the
## first waypoint in the `RobotTrajectory`_ or ``execute()`` will fail
## END_SUB_TUTORIAL
def wait_for_state_update(self, box_is_known=False, box_is_attached=False, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
## BEGIN_SUB_TUTORIAL wait_for_scene_update
##
## Ensuring Collision Updates Are Receieved
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## If the Python node dies before publishing a collision object update message, the message
## could get lost and the box will not appear. To ensure that the updates are
## made, we wait until we see the changes reflected in the
## ``get_known_object_names()`` and ``get_known_object_names()`` lists.
## For the purpose of this tutorial, we call this function after adding,
## removing, attaching or detaching an object in the planning scene. We then wait
## until the updates have been made or ``timeout`` seconds have passed
start = rospy.get_time()
seconds = rospy.get_time()
while (seconds - start < timeout) and not rospy.is_shutdown():
# Test if the box is in attached objects
attached_objects = scene.get_attached_objects([box_name])
is_attached = len(attached_objects.keys()) > 0
# Test if the box is in the scene.
# Note that attaching the box will remove it from known_objects
is_known = box_name in scene.get_known_object_names()
# Test if we are in the expected state
if (box_is_attached == is_attached) and (box_is_known == is_known):
return True
# Sleep so that we give other threads time on the processor
rospy.sleep(0.1)
seconds = rospy.get_time()
# If we exited the while loop without returning then we timed out
return False
## END_SUB_TUTORIAL
def add_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
## BEGIN_SUB_TUTORIAL add_box
##
## Adding Objects to the Planning Scene
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## First, we will create a box in the planning scene at the location of the left finger:
box_pose = geometry_msgs.msg.PoseStamped()
box_pose.header.frame_id = "panda_leftfinger"
box_pose.pose.orientation.w = 1.0
box_name = "box"
scene.add_box(box_name, box_pose, size=(0.1, 0.1, 0.1))
## END_SUB_TUTORIAL
# Copy local variables back to class variables. In practice, you should use the class
# variables directly unless you have a good reason not to.
self.box_name=box_name
return self.wait_for_state_update(box_is_known=True, timeout=timeout)
def attach_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
robot = self.robot
scene = self.scene
eef_link = self.eef_link
group_names = self.group_names
## BEGIN_SUB_TUTORIAL attach_object
##
## Attaching Objects to the Robot
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## Next, we will attach the box to the Panda wrist. Manipulating objects requires the
## robot be able to touch them without the planning scene reporting the contact as a
## collision. By adding link names to the ``touch_links`` array, we are telling the
## planning scene to ignore collisions between those links and the box. For the Panda
## robot, we set ``grasping_group = 'hand'``. If you are using a different robot,
## you should change this value to the name of your end effector group name.
grasping_group = 'hand'
touch_links = robot.get_link_names(group=grasping_group)
scene.attach_box(eef_link, box_name, touch_links=touch_links)
## END_SUB_TUTORIAL
# We wait for the planning scene to update.
return self.wait_for_state_update(box_is_attached=True, box_is_known=False, timeout=timeout)
def detach_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
eef_link = self.eef_link
## BEGIN_SUB_TUTORIAL detach_object
##
## Detaching Objects from the Robot
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## We can also detach and remove the object from the planning scene:
scene.remove_attached_object(eef_link, name=box_name)
## END_SUB_TUTORIAL
# We wait for the planning scene to update.
return self.wait_for_state_update(box_is_known=True, box_is_attached=False, timeout=timeout)
def remove_box(self, timeout=4):
# Copy class variables to local variables to make the web tutorials more clear.
# In practice, you should use the class variables directly unless you have a good
# reason not to.
box_name = self.box_name
scene = self.scene
## BEGIN_SUB_TUTORIAL remove_object
##
## Removing Objects from the Planning Scene
## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## We can remove the box from the world.
scene.remove_world_object(box_name)
## **Note:** The object must be detached before we can remove it from the world
## END_SUB_TUTORIAL
# We wait for the planning scene to update.
return self.wait_for_state_update(box_is_attached=False, box_is_known=False, timeout=timeout)
# We only take N frames:
# Our goal is to do a samping and do a average method to minimize the error
Ncamera_frames = 100
detected_marker_corners = []
ALL_image_frame = []
ALL_depth_frame = []
ALL_tvecs = []
def main():
FLAG_CAMERA = 0 # Flag 0 means that no markers has been detected
# Camera infromations:
Kmatrix = np.array([ [607.51419, 0, 313.99530],[0, 608.1348, 238.316], [0, 0, 1] ])
Dstistort = np.array([ [0.02237, 0.9579, -0.0070, -0.00460, -3.74230462] ] )
arcu_dimesion = 15 #In millimeter <------------------------ From the user
arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_7X7_50)
arucoParams = cv2.aruco.DetectorParameters_create()
try:
# ----------------- USE THE CAMERA TO GET DETECT THE Aruco Marker -------------------- #
# Our goal at first is to detect the marker
for countframes in range(0, Ncamera_frames):
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
color_frame = frames.get_color_frame()
depth_frame = frames.get_depth_frame()
# Convert images to numpy arrays
color_image = np.asanyarray(color_frame.get_data())
# ALL_depth_frame.append( depth_frame )
# ALL_image_frame.append(color_image)
# Convert image to gray
gray = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY)
(corners, ids, rejected) = cv2.aruco.detectMarkers(gray, arucoDict, parameters=arucoParams)
if len(corners) == 0:
print("I did not detect any marker")
else:
print("I did detect atleast a marker")
FLAG_CAMERA = 1
for each_corners in corners:
sol = cv2.aruco.estimatePoseSingleMarkers(each_corners, arcu_dimesion, Kmatrix, Dstistort )
rvec = sol[0]
tvec = sol[1]
ALL_tvecs.append(tvec)
# For each frame show to the user what is been seen
cv2.imshow('RealSense', color_image)
cv2.waitKey(1)
# At this point we expect that atleast a marker has been detected
cv2.destroyAllWindows()
# # Now xyz poisitions are stored in tvec:
Xmean = 0.0
Ymean = 0.0
Zmean = 0.0
if (FLAG_CAMERA == 1):
count = 0
for each_tvcs in ALL_tvecs:
each_tvcs = each_tvcs.reshape((3,1))
Xmean = Xmean + each_tvcs[0]
Ymean = Ymean + each_tvcs[1]
Zmean = Zmean + each_tvcs[2]
count = count + 1
Xmean = Xmean/count
Ymean = Ymean/count
Zmean = Zmean/count
# Convert to meters
Xmean = np.divide(Xmean,1000)
Ymean = np.divide(Ymean,1000)
Zmean = np.divide(Zmean,1000)
# print("XYZ", Xmean, Ymean, Zmean)
Xmean = - 0.50 + Xmean
Ymean = 0.25 + Ymean + 0
Zmean = Zmean + 0
# Brining everything back to the world cordinate system
temp = float(Xmean)
Xmean = float(Ymean)
Ymean = temp
Zmean = float(Zmean)
# print("Correctect", Xmean, Ymean, Zmean)
print("XYZ", Xmean, Ymean, Zmean)
raw_input("User please validate if we want to proceed to the next step")
print "============ Press `Enter` to begin the tutorial by setting up the moveit_commander (press ctrl-d to exit) ..."
raw_input()
tutorial = MoveGroupPythonIntefaceTutorial()
# print "============ Press `Enter` to execute a movement using a joint state goal ..."
# raw_input()
# tutorial.go_to_joint_state()
# print "============ Press `Enter` to execute a movement using a pose goal ..."
# raw_input()
# tutorial.go_to_pose_goal()
print "============ Press `Enter` to plan and display a Cartesian path ..."
raw_input()
# cartesian_plan, fraction = tutorial.plan_cartesian_path(xdesired=Xmean, ydesired=Ymean, zdesired=Zmean)
# Move in x-axis:
cartesian_plan, fraction = tutorial.plan_cartesian_path_x(xdesired=Xmean)
rospy.sleep(1)
tutorial.execute_plan(cartesian_plan)
rospy.sleep(1)
# Move in y-axis:
cartesian_plan, fraction = tutorial.plan_cartesian_path_y(ydesired=Ymean)
rospy.sleep(1)
tutorial.execute_plan(cartesian_plan)
rospy.sleep(1)
print "============ Demo complete!"
except rospy.ROSInterruptException:
pipeline.stop()
return
except KeyboardInterrupt:
pipeline.stop()
return
finally:
pipeline.stop()
if __name__ == '__main__':
main()
## BEGIN_TUTORIAL
## .. _moveit_commander:
## http://docs.ros.org/kinetic/api/moveit_commander/html/namespacemoveit__commander.html
##
## .. _MoveGroupCommander:
## http://docs.ros.org/kinetic/api/moveit_commander/html/classmoveit__commander_1_1move__group_1_1MoveGroupCommander.html
##
## .. _RobotCommander:
## http://docs.ros.org/kinetic/api/moveit_commander/html/classmoveit__commander_1_1robot_1_1RobotCommander.html
##
## .. _PlanningSceneInterface:
## http://docs.ros.org/kinetic/api/moveit_commander/html/classmoveit__commander_1_1planning__scene__interface_1_1PlanningSceneInterface.html
##
## .. _DisplayTrajectory:
## http://docs.ros.org/kinetic/api/moveit_msgs/html/msg/DisplayTrajectory.html
##
## .. _RobotTrajectory:
## http://docs.ros.org/kinetic/api/moveit_msgs/html/msg/RobotTrajectory.html
##
## .. _rospy:
## http://docs.ros.org/kinetic/api/rospy/html/
## CALL_SUB_TUTORIAL imports
## CALL_SUB_TUTORIAL setup
## CALL_SUB_TUTORIAL basic_info
## CALL_SUB_TUTORIAL plan_to_joint_state
## CALL_SUB_TUTORIAL plan_to_pose
## CALL_SUB_TUTORIAL plan_cartesian_path
## CALL_SUB_TUTORIAL display_trajectory
## CALL_SUB_TUTORIAL execute_plan
## CALL_SUB_TUTORIAL add_box
## CALL_SUB_TUTORIAL wait_for_scene_update
## CALL_SUB_TUTORIAL attach_object
## CALL_SUB_TUTORIAL detach_object
## CALL_SUB_TUTORIAL remove_object
## END_TUTORIAL