Skip to content

Latest commit

 

History

History
141 lines (125 loc) · 5.05 KB

README.md

File metadata and controls

141 lines (125 loc) · 5.05 KB

NeRF

Implementing NeRF model from scratch

v1_coarse_fine
Chair Ship Hotdog
v11
Hotdog
v16
Lego Hotdog Materials
Final Version (v18) (Special thanks to: [4])

Custom Dataset

  1. Capture a video (forward facing), place it in Image2Pose_NERF/customdataset folder.
  2. Open terminal in that folder and extract frames using [Stackoverflow]:

    ffmpeg -i input.mp4 '%04d.png'

  3. Create a folder name 'extract' inside customdataset and place the extracted image in this folder.
  4. Reduce the number of frames using filterimage.py code present in Image2Pose_NERF/customdataset folder.
  5. Open COLMAP, click on new project -> select the customdataset for database and customdataset/images for image path -> save
  6. Now in COLMAP select Reconstruction option -> Auto Reconstruction -> Select workspace as customdataset -> Select image folder as customdataset/images -> select data type as video frames -> check shared intrinsics -> check sparse -> uncheck dense and now click Run. It will create Sparse name folder in customdataset.
  7. Now, in Image2Pose_NERF folder run image2pose.py, it will create poses_bounds.npy file [LLFF]:

    python image2pose.py customdataset/

  8. customdataset folder is final dataset.

Hyperparameters Synthetic:

Parameters Values
Iteration 200K
Scheduler Exponential Decay
Scheduler Step 160K approx.
Rays Sample 1024
Crop 0.5
Pre Crop Iter 50
Factor 2
Near Plane 2.0
Far Plane 6.0
Height 800 / factor
Width 800 / factor
Downscale 2
lr 5e-4
lrsch_gamma 0.1
Pos Enc Dim 10
Dir Enc Dim 4
Num Samples 64
Num Samples Fine 128
Net Dim 256
Net Depth 8
Inp Feat 2*(num_channels*pos_enc_dim) + num_channels
Dir Feat 2*(num_channels*dir_enc_dim) + num_channels

References:

[1] Computer Graphics and Deep Learning with NeRF using TensorFlow and Keras [Link]

[2] 3D volumetric rendering with NeRF [Link]

[3] Nerf Official Colab Notebook [Link]

[4] NeRF PyTorch [Link] ( Special Thanks :) )

[5] PyTorch Image Quality (PIQ) [Link]